• Title/Summary/Keyword: Equivalent loading method

Search Result 189, Processing Time 0.022 seconds

Modified Equivalent Frame Models for Flat Plate slabs Under Lateral Load (수평하중을 받는 플랫 플레이트 슬래브 해석을 위한 수정된 등가골조모델)

  • Park Young Mi;Cho Kyung Hyun;Han Sang Whan;Lee Li Hyung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.272-275
    • /
    • 2004
  • This study is to propose a modified equivalent frame method under lateral loading. ACI 318-02 allows the equivalent frame method to conduct slab analysis subjected to lateral loads. However, current method can not predict the behavior of the slabs particularly under lateral loading because the equivalent frame method in the ACI 318 has been developed against gravity loads. This study provides more precise model for the analysis of the flat plate slabs under lateral loading. The model reflect the force transfer mechanism of slabs, column and torsional member more accurately than the existing model. The accuracy of this model is verified by compared with finite element method analysis results.

  • PDF

Analysis of the Linear Transformation of Prestressing Tendon Using Equivalent toad Method (등가하중법 관점에서 분석한 프리스트레싱 텐던의 직선이동)

  • 오병환;전세진
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.6
    • /
    • pp.843-850
    • /
    • 2002
  • Linear transformation theory has been effectively used in the design and analysis of prestressed concrete structures. The underlying assumptions of the theory, which were often overlooked, are investigated in the respect of equivalent load method. As a result, it is found that the same equivalent loading system is produced for all the cases of the linear transformation by the assumptions of the conventional equivalent load method. On the other hand, equivalent loading systems in a strict and accurate sense do not satisfy the classical theories of the linear transformation. Also, it is shown that a little different equivalent loading system from the conventional one is obtained for each linear transformation according to the proposed equivalent load method that is derived from the self-equilibrium property of the tendon-induced forces. Therefore, it can be concluded that the linear transformation theory is valid only when referring to the conventional approximate equivalent load method. The discussions are further extended to the eccentrically located circumferential tendon in the wall of containment structures, where the problem of eccentricity is analyzed also from the view point of the linear transformation.

Realistic Equivalent Load Methods in Prestressed Concrete Structures

  • Oh, Byung-Hwan;Jeon, Se-Jin
    • KCI Concrete Journal
    • /
    • v.13 no.1
    • /
    • pp.11-17
    • /
    • 2001
  • The purpose of this state-of-the-art paper is to explore several important methods thor obtaining the equivalent loads in prestressed concrete structures. and to clarify the theoretical basis and implied assumptions of each method. The method devised in this stuffily include the use of curvature of tendon, characteristics of primary moment, self-equilibrium condition and linear segments approximation of tendon. It is shown that equivalent loading system it not uniquely determined depending on the approach adopted to calculate the equivalent loads. Self-equilibrium conditions of the equivalent loading system are carefully discussed. Numerical examples are presented to show the differences among the methods arid results of the approximations in each method explicitly.

  • PDF

Analysis of Correction of Welding Deformation of Stiffened Plate by Heating Using Equivalent Loading Method based on Inherent Strain (고유변형도 기반 등가하중법에 의한 보강판의 가열 교정 해석)

  • 송하철;류현수;장창두
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.41 no.4
    • /
    • pp.85-91
    • /
    • 2004
  • The objective of the present paper is to develop an analysis method for the correction of welding deformation of stiffened plate by line heating. In this paper, the equivalent loading method, based on the inherent strain theory, was used to analyze the heat-straightening of a stiffened plate. Equivalent loads were obtained by integrating the inherent strains which were determined from the highest temperature and the degree of restraint. Finally, the obtained equivalent loads were imposed, as applied loads, on the elastic analysis for the prediction of correction of welding deformation in stiffened plate. The proposed method is expected as a basic study in heat-straightening analysis of welding deformation in large scale block.

Analysis of Post Weld Deformation at HAZ by External Forces Based on Inherent Strain (고유변형도 기반 열변형부의 후속 하중에 기인한 용접 후 변형 해석)

  • Kim, Jong-Tae;Ha, Yun-Sok;Jang, Chang-Doo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.43 no.2 s.146
    • /
    • pp.220-227
    • /
    • 2006
  • In case of welding, the inherent strains are generated, because a structure experiences the plastic yielding. The inherent strain is defined as the irrecoverable strain after removing structural restraints and loading. For the analysis method of welding distortion, equivalent loading method based on inherent strain is in general use due to its efficiency and effectiveness. However, it is generally difficult to know the final strain of the welded structure if additional loadings were applied after welding. for this reason, this study introduced the concept of the hardening and added the hardening term to the equivalent loading method based on inherent strain. Therefore, the purposes of this study are to develop the inherent strain formula considering the hardening effect and to calculate residual Stresses Using Proposed inherent Strain. Also, this Study Verified the availability Of proposed inherent strain method by loading-unloading experiment on welded plate.

An Experimental Study on the Liquefaction Resistance Strength Using Real Earthquake Loadings Considering Seismic Magnitude in Moderate Earthquake Region (실지진하중을 이용한 중진지역에서의 액상화 저항강도에 관한 실험적 연구)

  • 김수일;최재순;박성용;박근보;심재욱
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.569-576
    • /
    • 2003
  • Based on the equivalent uniform stress concept Presented by Seed and Idriss, sinusoidal cyclic loads which simplified earthquake loads have been applied in evaluating the liquefaction resistance strength experimentally. However, the liquefaction resistance strength of soil based on the equivalent uniform stress concept can not exactly reflect the dynamic characteristics of the irregular earthquake motion. The liquefaction assessment method which was invented by using the equivalent uniform stress concept is suitable for the severe earthquake region such as Japan or USA, so the proper method to Korea is needed. In this study, estimation of the resistance to liquefaction was conducted by applying real earthquake loading to the cyclic triaxial test. From the test results, the characteristics of the fine sand under moderate earthquake were analyzed and compared with the results under strong earthquakes. Typically real earthquake loads used in this study are divided into two types - impact type and vibration type. Furthermore, results of the liquefaction resistance strength based on the equivalent uniform stress concept and tile concept using real earthquake loading were compared.

  • PDF

Analysis of Post-Weld Deformation at the Heat-Affected Zone Using External Forces Based on the Inherent Strain

  • Ha, Yun-Sok;Jang, Chang-Doo;Kim, Jong-Tae;Mun, Hyung-Suk
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.8 no.4
    • /
    • pp.56-62
    • /
    • 2007
  • An analytical method to predict the post-weld deformation at the heat-affected zone (HAZ) is presented in this paper. The method was based on the assumption that the post-weld deformation is caused by external forces resulting from the inherent strain, which is defined as the irrecoverable strain after removing structural restraints and loadings. In general, the equivalent loading method can be used to analyze distortions in welding areas because it is efficient and effective. However, if additional loads are applied after welding, it is difficult to determine the final strain on a welded structure. To determine the final strain of a welded structure at the HAZ more accurately, we developed a modified equivalent loading method based on the inherent strain that incorporated hardening effects. The proposed method was applied to calculate the residual stress at the HAZ. Experiments were also conducted on welded plates to evaluate the validity of the proposed method.

The Fatigue Cumulative Damage and Life Prediction of GFRP under Random Loading (랜덤하중하의 GFRP의 피로누적손상거동과 피로수명예측)

  • Kim, Jeong-Gyu;Sim, Dong-Seok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.12
    • /
    • pp.3892-3898
    • /
    • 1996
  • In this study, the prediction of the fatigue life as well as the extimation of the characteristics of fatigue cumulative damage on GFRP under random loading were performed. The constant amplitude tests and the ramdom loading test were carried on notched GFRP specimens with a circular hole. Random waves were generated with a micro-computer and had wide band spectra. Since it is useful that the prediction of fatigue life ot the given load sequences is based on S-N curves under constant amplitude loading, the estimation of equivalent stress is done on every random waves. The equivalent stress wasat first estimated by Miner's rule and then by the proposed model which was based on Hashin-Rotem's comulative damage theory regarding nonlinear fatigue cumulative damage behavior. The fatigue lives were predicted from each equivalent stress evaluated. And each predicted fatigue llife was compared with experimental results. The number of cycles of random loads were counted by mean-cross counting method. The reuslts showed that the fatigue life predicted by proposed model was correlated well with the experimental results in comparison with Miner's model.

The Prediction of Dynamic Fatigue Life of Multi-axial Loaded Structure (다축 하중 구조물의 동적 피로수명 예측)

  • Yoon, Moon Young;Kim, Kyeung Ho;Park, Jang Soo;Boo, Kwang Seok;Kim, Heung Seob
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.2
    • /
    • pp.231-235
    • /
    • 2013
  • The purpose of this paper is to compare with estimation of equivalent fatigue load in time domain and frequency domain and estimate the fatigue life of structure with multi-axial vibration loading. The fatigue analysis with two methods is implemented with various signals like random, sinusoidal signals. Also an equivalent fatigue life estimated by rainflow cycle counting in time domain is compared with results estimated with probability density function of each signal in frequency domain. In case of frequency domain, equivalent fatigue life can estimate through Dirlik's method with probability density function. And the work proposed in this paper compared the fatigue damage accumulated under uni-axial loading to that induced by multi-axial loading. The comparison is preformed for a simple cantilever beam, which is exposed to vibrations of several directions. For verification of estimation performance of fatigue life, results are compared to those of FEM analysis (ANSYS).

Optimal Design of Induction Motor Rotor Slot Shape for Electric Vehicle by Response Surface Method (반응표면법을 이용한 전기자동차 구동용 유도전동기의 회전자 슬롯형상 최적설계)

  • Jeon, Kyung-Won;Hahn, Sung-Chin
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.11
    • /
    • pp.58-66
    • /
    • 2011
  • In this paper, the starting torque and efficiency characteristics of the induction motor (IM) for the electric vehicle (EV) are improved by changing the slot shapes of squirrel cage. The initial model of the induction motor is designed by the loading distribution method (LDM), and then the rotor with squirrel cage of NEMA class A is selected to optimize the slot shape by response surface method(RSM). The design variables of rotor slot shape are obtained by the RSM. Starting torque and efficiency were calculated by the equivalent circuit method. As a result, starting torque and efficiency of the optimized model shows good performance through whole-speed range.