• Title/Summary/Keyword: Equivalent hydrogen consumption

Search Result 8, Processing Time 0.017 seconds

Evaluation of Hybridization in FCVs Based on Equivalent Fuel Consumption (등가 연료 소모량을 이용한 연료전지 자동차의 하이브리화에 대한 평가)

  • Zheng, Chun-Hua;Shin, Chang-Woo;Park, Yeong-Il;Cha, Suk-Won
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.5
    • /
    • pp.143-147
    • /
    • 2011
  • Operating points of a fuel cell system (FCS) can be shifted to its high-efficiency region by hybridization in a fuel cell hybrid vehicle (FCHV), so the hydrogen can be saved. In this paper, the hydrogen consumption of an FCHV is compared to that of a fuel cell vehicle (FCV). A power management strategy is applied to the FCHV and the related simulation is carried out. The concept of equivalent hydrogen consumption is introduced in order to consider the effect of the difference between initial and final battery SOC on the total hydrogen consumption.

An Economic Analysis on Slush Hydrogen Containing Liquid and Solid Phase for Long-Term and Large-Scale Storage (장주기/대용량 수소저장을 위한 액체/고체기반 Slush 수소의 저장 비용 분석)

  • PARK, SUNGHO;LEE, CHANGHYEONG;RYU, JUYEOL;HWANG, SEONGHYEON
    • Journal of Hydrogen and New Energy
    • /
    • v.33 no.3
    • /
    • pp.247-254
    • /
    • 2022
  • Slush hydrogen containing liquid and solid hydrogen is expected to achieve zero boil-off by suppressing boil-off gas because heat of fusion for solid absorbe the heat ingress from atmosphere. In this paper, quantitative analysis on storage cost considering specific energy consumption between 1,000 m3 class liquid hydrogen storage system with re-liquefaction and slush hydrogen storage system during equivalent zero boil off period. Even though approximately 50% of total storage capacity should be converted into solid phase during the initial cargo bunkering, total energy consumption to convert into slush hydrogen is relatively 25% less than re-liquefaction energy for boil off hydrogen during zero boil off period. That's because energy consumption of slush phase change take up only 1.8% of liquefaction energy. moreover, annual revenue requirement including CAPEX, OPEX and electric cost for slush hydrogen storage could be more reduced approximately 32.5% than those of liquid hydrogen storage and specific energy storage cost ($/kg-H2) could also be lowered by about 41.7% compared with liquid hydrogen storage.

An Evaluation of Net-zero Contribution by Introducing Clean Hydrogen Production Using Life Cycle Assessment (청정수소 생산 방식 도입에 따른 LCA 기반 탄소중립 기여도 평가)

  • SO JEONG JANG;DAE WOONG JUNG;JEONG YEOL KIM;YONG WOO HWANG;HEE KYUNG AN
    • Journal of Hydrogen and New Energy
    • /
    • v.35 no.2
    • /
    • pp.175-184
    • /
    • 2024
  • This study focuses on investigating the importance of managing greenhouse gas emissions from global energy consumption, specifically examining domestic targets for clean hydrogen production. Using life cycle assessment, we evaluated reductions in global warming potential and assessed the carbon neutrality contribution of the domestic hydrogen sector. Transitioning from brown or grey hydrogen to blue or green hydrogen can significantly reduce emissions, potentially lowering CO2 equivalent levels by 2030 and 2050. These research findings underscore the effectiveness of clean hydrogen as an energy management strategy and offer valuable insights for technology development.

Power Distribution Optimization of Multi-stack Fuel Cell Systems for Improving the Efficiency of Residential Fuel Cell (주택용 연료전지 효율 향상을 위한 다중 스택 연료전지 시스템의 전력 분배 최적화)

  • TAESEONG KANG;SEONGHYEON HAM;HWANYEONG OH;YOON-YOUNG CHOI;MINJIN KIM
    • Journal of Hydrogen and New Energy
    • /
    • v.34 no.4
    • /
    • pp.358-368
    • /
    • 2023
  • The fuel cell market is expected to grow rapidly. Therefore, it is necessary to scale up fuel cells for buildings, power generation, and ships. A multi-stack system can be an effective way to expand the capacity of a fuel cell. Multi-stack fuel cell systems are better than single-stack systems in terms of efficiency, reliability, durability and maintenance. In this research, we developed a residential fuel cell stack and system model that generates electricity using the fuel cell-photovoltaic hybrid system. The efficiency and hydrogen consumption of the fuel cell system were calculated according to the three proposed power distribution methods (equivalent, Daisy-chain, and optimal method). As a result, the optimal power distribution method increases the efficiency of the fuel cell system and reduces hydrogen consumption. The more frequently the multi-stack fuel cell system is exposed to lower power levels, the greater the effectiveness of the optimal power distribution method.

Stoichiometry of Hydrazine-Bromate Reaction in Acid Media

  • Choi, Q.Won;Jung, Jin
    • Journal of the Korean Chemical Society
    • /
    • v.15 no.4
    • /
    • pp.183-189
    • /
    • 1971
  • Stoichiometry of hydrazine-bromate reaction has been studied in acid media of varying compositions, elucidating the effects of bromide and chloride ions in sulfuric acid, perchloric acid, hydrochloric acid, and hydrobromic acid at varying concentrations of hydrogen ion and cupric ion. The study shows that the number of red-ox equivalent consumed by one mole of hydrazine becomes practically 4.00 if the concentrations of bromide and hydrogen ions are kept higher than 0.1M and 6M, respectively. The presence of copper tends to reduce the bromate consumption by hydrazine in an irregular manner, but such an effect becomes unimportant if the concentrations of bromide and hydrogen ions are kept sufficiently high.

  • PDF

Fuel Consumption and CO2 Characteristics of HCNG Bus (HCNG 버스의 연비와 CO2 배출특성)

  • Han, JO;Kim, YC;Lee, YC
    • Journal of the Korean Institute of Gas
    • /
    • v.21 no.2
    • /
    • pp.20-25
    • /
    • 2017
  • For the HCNG bus using fuel which is the mixture gas of hydrogen and natural gas, the fuel efficiency and $CO_2$ emission characteristics were analyzed based on the WHVC test results and compared with that of the CNG and diesel buses. $CO_2$ emission characteristics were also analyzed by contribution effects such as carbon emission factor and fuel consumption. As a result, the fuel economy of HCNG bus was evaluated to be 11.5% improvement compared to CNG bus, and it was also showed equivalent to diesel bus. In addition, the $CO_2$ emission of HCNG bus was reduced 20.4% and 34.5% compared to CNG bus and diesel bus respectively. It was concluded that the $CO_2$ emission characteristics were influenced by the carbon emission factor depending on fuel composition and the fuel consumption according to the engine performance.

Analysis of Performance and Energy Saving of a SOFC-Based Hybrid Desiccant Cooling System (건물용 연료전지 기반 하이브리드 제습냉방시스템 성능 및 에너지 절감 분석)

  • IN, JUNGHYUN;LEE, YULHO;KANG, SANGGYU;PARK, SUNGJIN
    • Journal of Hydrogen and New Energy
    • /
    • v.30 no.2
    • /
    • pp.136-146
    • /
    • 2019
  • A solid oxide fuel cell (SOFC) based hybrid desiccant cooling system model is developed to study the effect of fuel utilization rate of the SOFC on the reduction of energy consumption and $CO_2$ emission. The SOFC-based hybrid desiccant cooling system consists of an SOFC system and a Hybrid desiccant cooling system (HDCS). The SOFC system includes a stack and balance of plant (BOP), and HDCS. The HDCS consists of desiccant rotor, indirect evaporative cooler, electric heat pump (EHP), and heat exchangers. In this study, using energy load data of a commercial office building and SOFC-based HDCS model, the amount of ton of oil equivalent (TOE) and ton of $CO_2$ ($tCO_2$) are calculated and compared with the TOE and $tCO_2$ generation of the EHP using grid electricity.

Study on the Biodegradability of Dispersants and Dispersant/Bunker-C Oil Mixtures and the Dissolved Oxygen Consumption in the Seawater(I) - The Biodegradability of Dispersants and the Dissolved Oxygen Consumption in the Seawater - (해수중에서 유처리제 및 유처리제/Bunker-C유 혼합물의 생분해도와 용존산소소비에 관한 연구(I) - 유처리제의 생분해도와 용존산소소비 -)

  • KIM Gwang-Su;PARK Chung-Kil;YOU Sun-Jae
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.26 no.5
    • /
    • pp.493-501
    • /
    • 1993
  • As the dispersants and the dispersant/oil mixtures are degraded naturally by the microorganisms in the seawater, the consumption of dissolved oxygen may cause marine organisms to be damaged especially in the waters where the dissolved oxygen level is low due to the pollution and the restriction of seawater flow. The biodegradation experiment, the TOD analysis and the element analysis for three dispersants(SG, GL and WC) and a nonionic surfactant(OA-5) were conducted for the purposes of evaluating the biodegradability of dispersants and studying the effect of dispersants on dissolved oxygen in the seawater. The results of biodegradation experiment showed 1mg of dispersants to be equivalent to $0.403{\sim}0.595mg$ of $BOD_5$ and to $0.703{\sim}0.855mg$ of $BOD_{20}$, and 1mg of nonionic surfactant to be equivalent to 0.50mg of $BOD_5$ and to 0.97mg of $BOD_{20}$ in the natural seawater. The results of TOD analysis showed 1mg of dispersants to be $2.37{\sim}2.80mg$ of TOD and 1mg of nonionic surfactant to be 2.45mg of TOD. The results of element analysis showed carbon content and hydrogen content to be $67.6{\sim}76.5\%$ and $10.2{\sim}12.2\%$ for dispersants, and $65.3\%$ and $10.3\%$ for nonionic surfactant, respectively. No nitrogen element was detected in dispersants and a nonionic surfactant. The biodegradability of dispersants shown as the ratio of $BOD_5/TOD$ was found to be in the range of $17{\sim}21\%$, and that of nonionic surfactant was found to be about $20\%$. This means that dispersants and nonionic surfactant belong in the organic matter group of middle-biodegradabilily. The deoxygenation rates($K_1$) and ultimate oxygen demands($L_o$) obtained through the biodegration experiment and Thomas slope method were found to be $0.121{\sim}0.171/day$ and $3.155{\sim}3.810mg/l$ for 4mg/l of dispersants and to be 0.181/day and 1.911mg/l for 2mg/l of nonionic surfactant in the seawater, respectively.

  • PDF