• 제목/요약/키워드: Equivalent Young′s Modulus

검색결과 35건 처리시간 0.024초

장단비 분포를 갖는 단섬유 복합재의 영계수 예측에 대한 연구 (A Study on Prediction of Young's Modulus of Composite with Aspect Ratio Distribution of Short Fiber)

  • 이재곤
    • 동력기계공학회지
    • /
    • 제10권4호
    • /
    • pp.99-104
    • /
    • 2006
  • Young's modulus of composite has been predicted by Eshelby's equivalent inclusion method modified with Mori-Tanaka's mean field theory, where short fibers of aspect ratio distribution are assumed to be aligned. Young's modulus of the composite is predicted with the smallest class interval for simulating the actual distribution of fiber aspect ratio, which is compared with that computed using different class intervals. Young's modulus of the composite predicted with mean aspect ratio or the largest class interval is overestimated by the maximum 10%. As the class interval of short fibers for predicting Young's modulus decreases, the predicted results show good agreements with those obtained using the actual distribution of fiber aspect ratio. It can be finally concluded from the study that if and only if the class interval of short fiber normalized by the maximum aspect ratio is smaller than 0.1, the predicted results are consistent with those obtained using the actual distribution of aspect ratio.

  • PDF

Characterization and behaviors of single walled carbon nanotube by equivalent-continuum mechanics approach

  • Eltaher, Mohamed A.;Almalki, Talaal A.;Ahmed, Khaled I.E.;Almitani, Khalid H.
    • Advances in nano research
    • /
    • 제7권1호
    • /
    • pp.39-49
    • /
    • 2019
  • This paper focuses on two main objectives. The first one is to exploit an energy equivalent model and finite element method to evaluate the equivalent Young's modulus of single walled carbon nanotubes (SWCNTs) at any orientation angle by using tensile test. The calculated Young's modulus is validated with published experimental results. The second target is to exploit the finite element simulation to investigate mechanical buckling and natural frequencies of SWCNTs. Energy equivalent model is presented to describe the atomic bonding interactions and their chemical energy with mechanical structural energies. A Program of Nanotube modeler is used to generate a geometry of SWCNTs structure by defining its chirality angle, overall length of nanotube and bond length between two adjacent nodes. SWCNTs are simulated as a frame like structure; the bonds between each two neighboring atoms are treated as isotropic beam members with a uniform circular cross section. Carbon bonds is simulated as a beam and the atoms as nodes. A finite element model using 3D beam elements is built under the environment of ANSYS MAPDL environment to simulate a tensile test and characterize equivalent Young's modulus of whole CNT structure. Numerical results are presented to show critical buckling loads, axial and transverse natural frequencies of SWCNTs with different orientation angles and lengths. The understanding of mechanical behaviors of CNTs are essential in developing such structures due to their great potential in wide range of engineering applications.

Effects of Span-to-depth Ratio and Poisson's Ratio on Elastic Constants from Bending and Plate Tests

  • Jeong, Gi Young;Kong, Jin Hyuk
    • Journal of the Korean Wood Science and Technology
    • /
    • 제43권2호
    • /
    • pp.177-185
    • /
    • 2015
  • The goal of this study is to evaluate the limitation of ASTM D 198 bending and ASTM D 3044 in determination of elastic modulus and shear modulus. Different material properties and span to depth ratios were used to analyze the effects of material property and testing conditions. The ratio of true elastic modulus to apparent elastic modulus evaluated from ASTM D 198 bending sharply decreased with increment of span to depth ratio. Shear modulus evaluated from ASTM D 198 bending decreased with increment of depth, whereas shear modulus evaluated from ASTM D 3044 was hardly influenced by increment of depth. Poisson's ratio influenced shear modulus from ASTM D 198 bending but did not influence shear modulus from ASTM D 3044. Different shearing factor was obtained for different depths of beams to correct shear modulus obtained from ASTM D 198 bending equivalent to shear modulus from theory of elasticity. Equivalent shear modulus of materials could be obtained by applying different shearing factors associated with beam depth for ASTM D 198 bending and correction factor for ASTM D 3044.

경계요소법에 의한 원형함유물에서 파생되는 경사균열의 응력확대계수 해석 (Analyses of Stress Intensity Factors for Slant Crack Emanation from Circular Inclusion by Boundary Element Method)

  • 박성완;황순원
    • 한국생산제조학회지
    • /
    • 제7권5호
    • /
    • pp.72-84
    • /
    • 1998
  • In order ot study the influence of a circular inclusion on a stress field near a crack tip, mutual interference of a slant crack and the circular inclusion is analyzed of a bimaterial inclusion. As the crack emanates at the equivalent slant crack angle the correction factors FⅠ and FⅡ for the inclusion wit small Young's modulus were found to decrease as the inclusion radius increased. The correction factors for inclusion with large Young's modulus increase as the inclusion radius increases at the equivalent radius of the inclusion, the correction factors decrease as the slant crack angle increases for the aspect ratio $\frac{c}{W}$ = 0.1 irrespective of the Young's modulus. For $\frac{c}{W}$ greater than 0.2, they increase as the slant crack angle increases. There is no influence of stress mutual interfce after crack emanates beyond the inclusion radius.

  • PDF

New Evaluation and Test of Sidewall's Rotational Stiffness of Radial Tire

  • Kim Young-Woo;Kim Yong-Sung
    • Journal of Mechanical Science and Technology
    • /
    • 제20권6호
    • /
    • pp.748-758
    • /
    • 2006
  • In this paper, we have revisited the estimation of the rotational stiffness of sidewall of radial tire and have suggested a new method for evaluation of the rotational stiffness. Since thicknesses, and volume fractions of the constituents of sidewall are varied depending on radial position, the equivalent shear modulus of the sidewall also depends on radial position. For the estimation of rotational stiffness of sidewall's rubber, we have divided its cross-section into sufficient numbers of small parts and have calculated the equivalent shear modulus of each part of sidewall. Using the shear moduli of divided parts, we have obtained the rotational stiffness by employing in-plane shear deformation theory. This method is expected to be a useful tool in tire design since it relates such basic variables to the global stillness of tire. Applying the calculation method to a radial tire of P205/60R15, we have compared its rotational stiffness with experimental one.

복합감쇠보의 진동해석을 위한 등가보요소의 개발 (Equivalent Beam Element for Vibration Analysis of Damped Composite Beam Structure)

  • 원성규;정의봉;배수룡
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 추계학술대회논문집
    • /
    • pp.844-847
    • /
    • 2006
  • In this paper, the forced vibration of damped composite beam with I-type section was analyzed. The damping material was assumed to have complex Young's modulus. Damped composite beam structure could be modeled using equivalent beam elements with less D.O.F. rather than solid elements. Finite element method for 6 D.O.F. equivalent beam element was formulated and programmed using complex values. The results of frequency responses revealed good agreement with those of NASTRAN in both Euler beam model and Timoshenko beam model.

  • PDF

유한요소해석을 이용한 다상의 초전도 코일에 대한 기계적 열적 등가 물성 (Equivalent Mechanical and Thermal Properties of Multiphase Superconducting Coil Using Finite Element Analysis)

  • 사정우;허남일;최창호;오영국;조승연;도철진;권면;이경수
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집A
    • /
    • pp.975-980
    • /
    • 2001
  • Like composite material. the coil winding pack of the KSTAR (Korea Superconducting Tokamak Advanced Research) consist of multiphase element such as metallic jacket material for protecting superconducting cable, vacuum pressurized imprepregnated (VPI) insulation, and corner roving filler. For jacket material, four CS (Central Solenoid) Coils, $5^{th}$ PF (Poloidal Field) Coil, and TF (Toroidal Field Coil) use Incoloy 908 and $6-7^{th}$ PF coil, Cold worked 316LN. In order to analyze the global behavior of large coil support structure with coil winding pack, it is required to replace the winding pack to monolithic matter with the equivalent mechanical properties, i.e. Young's moduli, shear moduli due to constraint of total nodes number and element numbers. In this study, Equivalent Young's moduli, shear moduli, Poisson's ratio, and thermal expansion coefficient were calculated for all coil winding pack using Finite Element Method.

  • PDF

Single Wall Carbon Nanotube의 등가 연속체 모델에 대한 연구 (Equivalent Continuum Model for the Single Wall Carbon Nanotube)

  • 김병구;전흥재
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.227-234
    • /
    • 2003
  • In this study, an equivalent continuum model for single wall carbon nanotube is proposed. The model links interatomic potentials and atom structure of a materials to a constitutive model on the continuum level. The Young's modulus and shear modulus were predicted by the model. The predictions were in good agreement with the prior experimental results available in the literatures. Also, the strain energy of the carbon nanotube was predicted as a function of the radius of the carbon nanotube.

  • PDF

섬유다발의 굴곡도에 따른 유연직물복합재료의 등가탄성계수 예측 (Prediction of Equivalent Elastic Modulus for Flexible Textile Composites according to Waviness Ratio of Fiber Tows)

  • 서영욱;김성준;안석민
    • 항공우주기술
    • /
    • 제9권2호
    • /
    • pp.73-79
    • /
    • 2010
  • 본 연구에서는 비선형 유한요소 해석을 수행하여 굴곡도에 따른 유연직물복합재료의 등가 탄성계수를 예측하였다. 해석은 상용 유한요소 해석 프로그램인 ABAQUS를 사용하여 수행되었다. 해석에서는 섬유다발의 재료적 비선형성과 대변형 시 발생하는 기하학적 비선형성이 고려되었으며, 섬유다발의 대 전단 변형으로 발생하는 기하학적 비선형성을 고려하기 위하여 사용자 부프로그램을 작성하여 이를 ABAQUS내에 삽입하였다. 결과에서는 일축하중 상태에 있는 유연직물복합재료의 응력-변형률 거동을 예측하여 이로부터 계산된 등가탄성계수를 시험결과와 비교하였으며, 다양한 섬유 굴곡도를 갖는 유연직물복합재료에 대한 등가탄성계수를 계산하였다.

Computational continuum modelling to analysis the dynamic and static stability of a cantilever nano-scale system

  • Jiangjiang Li
    • Advances in Computational Design
    • /
    • 제8권1호
    • /
    • pp.77-96
    • /
    • 2023
  • Calculating size-dependent mechanical properties of the nano-scale materials usually involves cumbersome numerical and theoretical works. In this paper, we aim to present a closed-form relation to calculate the length-dependent Young's modulus of carbon nanotubes (CNTs) based on nonlocal elasticity theory. In this regard, a single wall carbon nanotube (SWCNT) is considered as a rod structure and the governing nonlocal equations are developed under uniaxial tensile load. The equations are solved using analytical methods and strain distribution, total displacement and the size-dependent equivalent Young's modulus are obtained. Further, the results are compared with the molecular dynamics results from the literature. The outcome indicates that the calculated relations are coincident with the molecular dynamics results.