• Title/Summary/Keyword: Equivalent Support

Search Result 291, Processing Time 0.022 seconds

Vibrational Analysis of Rotor Model considering the Dynamic Characteristics of the Support Structure (지지구조물의 동특성을 고려한 회전축 모델의 진동해석)

  • Choe, Bok-Rok;Park, Jin-Mu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.4
    • /
    • pp.555-563
    • /
    • 2001
  • Support dynamics are often important in rotordynamic analyses. It may well happen in real situation of machines such as centrifugal pumps or turbines operating on flexible structure. This paper presents the applications of the impedance coupling method and the improved rotor model for including the support effects on the interaction with the rotor. The impedance coupling techniques are based on the FRFs of each substructure. Its dynamic stiffness matrix can be assembled to generate the system matrix, which satisfy the constraint conditions in the connection coordinates. And, the improved rotor uses the simplified spring-mass models as support properties. The equivalent support models are directly incorporated into the finite element rotor model. To verify the suggested analytical procedures, the results are compared to those of the pump system.

Nonlinear Response Structural Optimization of a Spacer Grid Spring for a Nuclear Fuel Rod Using the Equivalent Loads (등가하중을 이용한 원자로 핵연료봉 지지격자 스프링의 비선형 응답 구조 최적설계)

  • Kim, Do-Won;Lee, Hyun-Ah;Song, Ki-Nam;Kim, Yong-ll;Park, Gyung-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.12
    • /
    • pp.1165-1172
    • /
    • 2007
  • The spacer grid set is a part of a nuclear fuel assembly. The set has a spring and the spring supports the fuel rods safely. Although material nonlinearity is involved in the deformation of the spring, nonlinearity has not been considered in design of the spring. Recently a nonlinear response structural optimization method has been developed using equivalent loads. It is called nonlinear response optimization equivalent loads (NROEL). In NROEL, the external loads are transformed to the equivalent loads (EL) for linear static analysis and linear response optimization is carried out based on the EL in a cyclic manner until the convergence criteria are satisfied. EL is the load set which generates the same response field of linear analysis as that of nonlinear analysis. Shape optimization of the spring is carried out based on EL. The objective function is defined by minimizing the maximum stress in the spring while mass is limited and the support force of the spring is larger than a certain value. The results are verified by nonlinear response analysis. ABAQUS is used for nonlinear response analysis and GENESIS is employed for linear response optimization.

Nonlinear Response Structural Optimization of a Nuclear Fuel Rod Spacer Grid Spring Using the Equivalent Load (등가하중을 이용한 원자로 핵연료봉 지지격자 스프링의 비선형 응답 구조 최적설계)

  • Kim, Do-Won;Lee, Hyun-Ah;Song, Ki-Nam;Kim, Yong-Il;Park, Gyung-Jin
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.694-699
    • /
    • 2007
  • The spacer grid set is a part of a nuclear fuel assembly. The set has a spring and the spring supports the fuel rods safely. Although material nonlinearity is involved in the deformation of the spring,nonlinearity has not been considered in design of the spring. Recently a nonlinear response structural optimization method has been developed using equivalent loads. It is called nonlinear response optimization equivalent loads (NROEL). In NROEL, the external loads are teansformed to the equivalent loads (EL) for linear static analysis and linear response optimization is carried out based on the EL in a cyclic manner until the convergence criteria are satisfied. EL is the load set which generates the same response no EL. The objective function is defined by minimizing the maximum stress in the spring while is limited and the support force of the spring is larger than a certain value. The results are verified by nonlinear. ABAQUS is used for nonlinear response analysis and GENESIS is employed for linear response optimization.

  • PDF

Generation of Gate-level Models Equivalent to Verilog UDP Library (Verilog UDP Library의 등가 게이트수준 모델 생성)

  • 박경준;민형복
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.40 no.1
    • /
    • pp.30-38
    • /
    • 2003
  • UDP library of Verilog HDL has been used for simulation of digital systems. But it takes a lot of time and efforts to generate a gate-level library equivalent to the UDP library manually due to the characteristic of UDP that does not support synthesis. It is indispensable to generate equivalent gate-level model in testing the digital systems because fault coverage can be reduced without the equivalent gate-level models. So, it is needed to automate the process of generating the equivalent gate-level models. An algorithm to solve this problem has been proposed, but it is unnecessarily complex and time-consuming. This paper suggests a new improved algorithm to implement the conversion to gate-level models, which exploits the characteristic of UDP Experimental results are demonstrated to show the effectiveness of the new algorithm.

Estimation for Equivalent Flexural Stiffness of Innovative Prestressed Support(IPS) Wale (혁신적 프리스트레스트 가시설(IPS)의 띠장에 대한 등가 휨강성의 산정)

  • Kim, Sung Bo;Kim, Hun Kyom;Heo, In Sung
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.4
    • /
    • pp.393-401
    • /
    • 2009
  • The flexural-stiffness formula of the wale for the innovative prestressed support (IPS) system was precisely derived, and the equivalent beam stiffness was introduced for application in the actual design of the IPS wale. The cable tension forces of the IPS wale were calculated in both cases, and the axial-deformation effects were included and ignored, respectively. The central displacements of the 1-post, 2-post, 3-post, and 4-post IPS wales were calculated based on the principle of virtual work. The effects of the IPS wale length and cable inclination angle were also investigated using the derived central displacements. The simplified equivalent flexural stiffness of the IPS wale is presented herein for design purposes, and the validity of the proposed design formula was verified through its comparison with the FE and analysis solutions.

Strength analysis of mechanical transmission using equivalent torque of plow tillage of an 82 kW-class tractor

  • Kim, Taek-Jin;Kim, Wan-Soo;Kim, Yeon-Soo;Chung, Sun-Ok;Park, Seong-Un;Hong, Soon-Jung;Choi, Chang-Hyun;Kim, Yong-Joo
    • Korean Journal of Agricultural Science
    • /
    • v.46 no.4
    • /
    • pp.723-735
    • /
    • 2019
  • The power-train is the most important component of an agricultural tractor. In this study, the strength of the driving gear transmission of an 82 kW-class tractor was analyzed using equivalent torque during plow tillage. The load measurement system consisted of an engine revolution speed sensor, torque-meters, revolution speed sensors for four axles, and pressure sensors for two hydraulic pumps. The load data were measured during plow tillage for four speed stages: F2 (2.78 km/h), F5 (5.35 km/h), F7 (7.98 km/h), and F8 (9.75 km/h). Aspects of the gear-strength such as bending stress, contact stress, and safety factors were analyzed under two torque conditions: the equivalent torque at the highest plow load for the F8 speed stage and the maximum engine torque. The simulation results using KISSsoft showed that the maximum engine torque conditions had a lower safety factor than did the highest equivalent torque condition. The bending safety factors were > 1 at all gear stages, indicating that gear breakage did not occur under actual measured operating conditions, nor under the maximum torque conditions. However, the equivalent torque condition in the contact stress safety factor was > 1, and the maximum torque condition was < 1 at the first gear pair. The method of analysis using the equivalent torque showed lower stress and higher safety factor than did the method using maximum torque. Therefore, when designing a tractor by applying actual working torque, equivalent torque method would support more reliable product development.

Approximate calculation of the static analysis of a lifted stay cable in super-long span cable-stayed bridges

  • Zhao, Xinwei;Xiao, Rucheng;Sun, Bin
    • Structural Engineering and Mechanics
    • /
    • v.74 no.5
    • /
    • pp.635-655
    • /
    • 2020
  • The sag effect of long stay cables is one of the key factors restricting further increase in the span of cable-stayed bridges. Based on the formerly proposed concept of long stay cables lifted by an auxiliary suspension cable in cross-strait cable-stayed bridges, corresponding static approximate calculations and analytical theory based on catenary and parabolic cable configurations are established. Taking a main span 1400 m cable-stayed bridge as the research object, three typical lifting conditions and the whole process of auxiliary cable lifting are analyzed and discussed. The results show that the sag effect is effectively reduced. The support efficiency is only improved when the cables are lifted above the original cable chord. Reduction of the horizontal component force of the cable is limited. The equivalent elastic modulus and the vertical support stiffness of the lifted cables are significantly increased with increased horizontal projection length and not sensitive to the change of the lifting point position. The scheme of lifting the cable to the chord midpoint is more economical because of the less steel required for the auxiliary suspension cable, but its effect on improving the vertical support efficiency is limited. The support efficiency is better when the cable is lifted to the cable end tangential to the original cable chord, but the lifting force and the cross-sectional area of the auxiliary suspension cable are doubled. The approximate calculation results of the lifted cables are very close to the numerical analysis results, which verifies the applicability of the approximation method proposed in this study. The results of parabolic approximation calculations are approximately equal to that of catenary cable geometry. As the parabolic approximation analysis theory of lifted cables is more convenient in mathematical processing, it is feasible to use parabolic approximation analysis theory as the analytical method for the conceptual design of lifted cables of super-long span cable-stayed bridges.

Infilled frames: developments in the evaluation of cyclic behaviour under lateral loads

  • Cavaleri, L.;Fossetti, M.;Papia, M.
    • Structural Engineering and Mechanics
    • /
    • v.21 no.4
    • /
    • pp.469-494
    • /
    • 2005
  • In order to consider the modified seismic response of framed structures in the presence of masonry infills, proper models have to be formulated. Because of the complexity of the problem, a careful definition of an equivalent diagonal pin-jointed strut, able to represent the horizontal force-interstorey displacement cyclic law of the actual infill, may be a solution. In this connection the present paper, continuing a previous work in which a generalised criterion for the determination of the ideal cross-section of the equivalent strut was formulated, analizes some models known in literature for the prediction of the lateral cyclic behaviour discussing their field of validity. As a support of the discussion, the results of an experimental investigation involving single story-single bay infilled reinforced concrete. Frames under vertical and lateral loads with different kind of infill (actually not yet so much investigated) are presented. Finally, an improvement of a model known in the literature is proposed, taking the results of the experimental tests before mentioned into account.

Equivalent Mechanical and Thermal Properties of Multiphase Superconducting Coil Using Finite Element Analysis (유한요소해석을 이용한 다상의 초전도 코일에 대한 기계적 열적 등가 물성)

  • Sa, J.W.;Her, N.I.;Choi, C.H.;Oh, Y.K.;Cho, S.;Do, C.J.;Kwon, M.;Lee, G.S.
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.975-980
    • /
    • 2001
  • Like composite material. the coil winding pack of the KSTAR (Korea Superconducting Tokamak Advanced Research) consist of multiphase element such as metallic jacket material for protecting superconducting cable, vacuum pressurized imprepregnated (VPI) insulation, and corner roving filler. For jacket material, four CS (Central Solenoid) Coils, $5^{th}$ PF (Poloidal Field) Coil, and TF (Toroidal Field Coil) use Incoloy 908 and $6-7^{th}$ PF coil, Cold worked 316LN. In order to analyze the global behavior of large coil support structure with coil winding pack, it is required to replace the winding pack to monolithic matter with the equivalent mechanical properties, i.e. Young's moduli, shear moduli due to constraint of total nodes number and element numbers. In this study, Equivalent Young's moduli, shear moduli, Poisson's ratio, and thermal expansion coefficient were calculated for all coil winding pack using Finite Element Method.

  • PDF

Effect of Supportive Education Program for Hospice Patients's Family (호스피스환자 가족을 위한 지지적 교육프로그램의 효과)

  • Lee, Tae Yeon;Kwon, Yunhee
    • The Journal of Korean Academic Society of Nursing Education
    • /
    • v.20 no.2
    • /
    • pp.175-183
    • /
    • 2014
  • Purpose: The aim of this study was examine effects of fatigue, anxiety, depression, social support, and spiritual well-being of supportive education program for hospice patients's family. Method: Using a non-equivalent control group pre-post quasi-experimental design, 70 study subjects were assigned into two groups, experimental group (n=35) and the control group (n=35). Measures were fatigue, state-anxiety, depression, social support, and spiritual well-being to test for the effects of supportive education program for hospice patients's family. Data analyzed using $x^2$ test, t-test with SPSS/WIN 19.0 version. Results: The experimental group receiving supportive education program for hospice patients's family had a significant changes of fatigue, state-anxiety, depression, social support, and spiritual well-being. Conclusion: The supportive education program for hospice patients's family is an effective intervention to enhance social support and spiritual well-being and to decrease fatigue, anxiety and depression.