• Title/Summary/Keyword: Equivalent Stiffness

Search Result 612, Processing Time 0.037 seconds

Dynamic Behavior of Rigid Circular Foundation in Water-Saturated Transversely Isotropic Layered Stratum (지하수로 포화된 가로등방성 층상지반에 설치된 강체 원형 기초의 동적 거동)

  • Lee, Jin-Ho;Park, Jung-Jun;Kim, Jae-Kwan;Jin, Byeong-Moo
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2005.03a
    • /
    • pp.47-51
    • /
    • 2005
  • If a structure is founded on the ground saturated with pore water, then the ground should be modeled as a saturated two-phase porous medium for accurate earthquake response analysis. In this study, an axisymmetric transmitting boundary hyperelement is developed for modeling of far field of the ground using u-U formulation for water-saturated transversely isotropic layered stratum. The developed hyperelement is verified by comparing the dynamic stiffness of rigid circular foundation on water-saturated isotropic layered stratum with the case of using equivalent single-phase medium model.

  • PDF

Estimation of the Rail pad Stiffness Characteristic and the Sustainable period in Service (운행선에서 레일패드의 탄성변화율과 내구년수 예측)

  • Park, Dae-Geun;Kim, Jung-Hun;Choi, Hyun-Su;Kang, Young-Jong
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.432-441
    • /
    • 2007
  • Any track system needs major changes of its components during its life. The most economical solution is, if possible, to make all components reach their life limit during the major track rehabilitation operation. Usually, the rail does a role as the driving component for the objective: its life-time is equivalent to around 500 million tons of traffic on high speed lines. On the KTX line with 110 trains per day, this would correspond to around 16 years, which is probably too long for the elastic pads of a concrete slab track. The most economical solution should be to change them at an intermediate step of 8 years, without changing the rail, and then to change both the rail and elastic pad at 16 years intervals (some rail changes on the South East TGV line in France began 15 years after service opening at 260 km/h, but recent rails have better characteristics).

  • PDF

The Studies of Irradiation Hardening of Stainless Steel Reactor Internals under Proton and Xenon Irradiation

  • Xu, Chaoliang;Zhang, Lu;Qian, Wangjie;Mei, Jinna;Liu, Xiangbing
    • Nuclear Engineering and Technology
    • /
    • v.48 no.3
    • /
    • pp.758-764
    • /
    • 2016
  • Specimens of stainless steel reactor internals were irradiated with 240 keV protons and 6 MeV Xe ions at room temperature. Nanoindentation constant stiffness measurement tests were carried out to study the hardness variations. An irradiation hardening effect was observed in proton- and Xe-irradiated specimens and more irradiation damage causes a larger hardness increment. The Nix-Gao model was used to extract the bulk-equivalent hardness of irradiation-damaged region and critical indentation depth. A different hardening level under H and Xe irradiation was obtained and the discrepancies of displacement damage rate and ion species may be the probable reasons. It was observed that the hardness of Xe-irradiated specimens saturate at about 2 displacement/atom (dpa), whereas in the case of proton irradiation, the saturation hardness may be more than 7 dpa. This discrepancy may be due to the different damage distributions.

Optimal Treatment of Unconstrained Visco-elastic Damping Layer on Beam to Minimize Vibration Responses (진동응답을 최소화하는 비구속형 제진보의 제진 부위 최적설계)

  • Lee, Doo-Ho
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.7 s.100
    • /
    • pp.829-835
    • /
    • 2005
  • An optimization formulation of unconstrained damping treatment on beam is proposed to minimize vibration responses using a numerical search method. The fractional derivative model is combined with RUK's equivalent stiffness approach in order to represent nonlinearity of complex modulus of damping materials with frequency and temperature. Vibration responses are calculated by using the modal superposition principle, and of which design sensitivity formula with respect to damping layout is derived analytically. Plugging the sensitivity formula into optimization software, we can determine optimally damping treatment region that gives minimum forced response under a given boundary condition. A numerical example shows that the proposed method is very effective in suppressing nitration responses by means of unconstrained damping layer treatment.

Evaluation on the Floor Vibration Characteristics for the Vibration Control of Vibration Sensitive Equipments (정밀 혐진기기 방.제진을 위한 바닥 진동성능평가에 관한 연구)

  • Lee, Ho-Beom;Lho, Byeong-Cheol;Cho, Dong-Jin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.933-939
    • /
    • 2000
  • In this paper we present an overview of the factors and techniques that must be considered in vibration measurements in the floor structures for microelectronics facilities. Normally narrowband vibration spectrum or equivalent signals are suggested as the guide indexes of site vibration phenomina. But it cannot support perfect informations in designing vibration control systems for the vibration sensitive equipment even though the spectrum serves to illustrate the fact that most real vibration environments are dominated by broadband energy as opposed to tonal energy. The major topics cover stiffness in frequency and time domain, acceleration level and modal characteristics from experimental modal analysis as well as narrowband spectrum. The combined signal analysis through the items mentioned above can give better solutions and would be positively recomended to solve the vibration problems on a sort of limited field.

  • PDF

Theoretical evaluation of collision safety for Submerged Floating Railway Tunnel (SFRT) by using simplified analysis

  • Seo, Sung-il;Moon, Jiho;Mun, Hyung-Suk
    • Structural Engineering and Mechanics
    • /
    • v.64 no.3
    • /
    • pp.293-299
    • /
    • 2017
  • Submarine collisions is one of the major hazardous factor for Submerged Floating Railway Tunnel (SFRT) and this study presents the safety evaluation for submarine collision to SFRT by using theoretical approach. Simplified method to evaluate the collision safety of SFRT was proposed based on the beam on elastic foundation theory. Firstly, the time history load function for submarine collision was obtained by using one-degree-of-freedom vibration model. Then, the equivalent mass and stiffness of the structure were calculated, and the collision responses of SFRT were evaluated. Finite element analysis was conducted to verify the proposed equations, and it can be found that the collision responses, such as deflection, and acceleration, agreed well with the proposed equations. Finally, derailment condition for high speed train in SFRT due to submarine collision was proposed.

The Study of Continuous System Combined with Distributed DVA (II) (분포질량 동흡진기가 부착된 연속체 시스템에 대한 연구 (II))

  • Choi, Jeung-Hyun;Lim, Byoung-Duk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.3
    • /
    • pp.215-221
    • /
    • 2004
  • Large machine and structure can not be normally treated as lumped parameter system. Such machine or structure must be broken down to individual beams or panels the motion of which must be analysed before an absorber system can be designed for each element. The absorber may be a lumped parameter system or a continuous system. One of the most common elements in a machine or structure is the cantilever, and in this paper is considered the design of a continuous parameter absorber to reduce the transverse vibrations of a beam. So this paper describes the method to obtain the accurate information about combined continuous beam system with DVA. This information is obtained from the combined system's receptance. and this paper shows the convenience and useful informations when design the dynamic vibration absorber with the combined system's receptance.

The study of the reinforce effect with respect to the variation of the design parameter of reinforced plate structure (보강판의 설계 변수 변화에 따른 평판구조물의 보강효과에 관한 연구)

  • Han, Geun-Jo;Ahn, Sung-Chan;Shim, Jae-Joon;Jang, Hwal-Su
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.807-812
    • /
    • 2000
  • In general, a structure that is composed with plates has lower bending strength and stiffness than solid structure. To solve this problem, reinforced structures have been used. And we need rules to choose best shape for each using conditions. In this paper, simple equation that expresses equivalent thickness with respect to parameters by substituting results from Finite Element Analysis to normal plate displacement equation was derived.

  • PDF

Performance Analysis of Air Foil Bearings with Bump Friction (범프 마찰을 고려한 공기포일베어링의 성능해석)

  • Kim, Young-Cheol;Lee, Dong-Hyun;Kim, Kyung-Cheol
    • 유체기계공업학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.803-809
    • /
    • 2005
  • This paper presents the theoretical model to investigate the effect of Coulomb damping in the sub-structure of a foil bearing. Foil deflection is restricted by friction of bumps. Equivalent viscous damping of the bump foils is derived from the Coulomb friction. Dynamic equation of the bumps is constituted by stiffness and damping terms. This point give the difference from Heshmat's frictionless and simple compliance bump model. The fluid is modeled with the compressible Reynolds equation. A perturbation approach is used to determine the static and dynamic performance of the bearing from the coupled fluid-structural model. The analysis result shows that the static and dynamic performance is enhanced by bump friction. This analysis technique would be extended to development of a high performance bearing.

  • PDF

Design and Manufacturing of Composite Drive Shaft for Automobiles (자동차용 복합재료 드라이브샤프트 설계 및 성형 연구)

  • Kim, T.W.;Lee, S.K;Jun, E.J.;Kim, W.D.;Lee, D.G.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.1 no.3
    • /
    • pp.109-117
    • /
    • 1993
  • A carbon/epoxy composite drive shaft used for the power transmission of the automobiles with steel joints. Compared with the metallic drive shaft, the composite one has the weight saving of 50% with equivalent torsional strength and fatigue characteristics. In this study, the filament winding technique for the composite tube and composite/metal joining technique are estabilished. The performance test of the drive shaft is carried out. The optimal condition of the surface roughness of the steel adherend was $1.5{{\mu}m}$ to $2.5{{\mu}m}$, and the optimal condition of the bonding thickness was 0.15mm. Maximum torque and torsional stiffness of the composite drive shaft manufactured by filament winding process were found to be $210kg{\cdot}m$ and $18.5kg{\cdot}m/deg$, respectively.

  • PDF