• Title/Summary/Keyword: Equivalent Static Loads

Search Result 122, Processing Time 0.023 seconds

Mathematical Proof for Structural Optimization with Equivalent Static Loads Transformed from Dynamic Loads (동하중에서 변환된 등가정하중에 의한 최적화 방법의 수학적 고찰)

  • Park, Gyung-Jin;Kang, Byung-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.2
    • /
    • pp.268-275
    • /
    • 2003
  • Generally, structural optimization is carried out based on external static loads. All forces have dynamic characteristics in the real world. Mathematical optimization with dynamic loads is extremely difficult in a large-scale problem due to the behaviors in the time domain. The dynamic loads are often transformed into static loads by dynamic factors, design codes, and etc. Therefore, the optimization results can give inaccurate solutions. Recently, a systematic transformation has been proposed as an engineering algorithm. Equivalent static loads are made to generate the same displacement field as the one from dynamic loads at each time step of dynamic analysis. Thus, many load cases are used as the multiple leading conditions which are not costly to include in modern structural optimization. In this research, it is mathematically proved that the solution of the algorithm satisfies the Karush-Kuhn-Tucker necessary condition. At first, the solution of the new algorithm is mathematically obtained. Using the termination criteria, it is proved that the solution satisfies the Karush-Kuhn-Tucker necessary condition of the original dynamic response optimization problem. The application of the algorithm is discussed.

Improved modeling of equivalent static loads on wind turbine towers

  • Gong, Kuangmin;Chen, Xinzhong
    • Wind and Structures
    • /
    • v.20 no.5
    • /
    • pp.609-622
    • /
    • 2015
  • This study presents a dynamic response analysis of operational and parked wind turbines in order to gain better understanding of the roles of wind loads on turbine blades and tower in the generation of turbine response. The results show that the wind load on the tower has a negligible effect on the blade responses of both operational and parked turbines. Its effect on the tower response is also negligible for operational turbine, but is significant for parked turbine. The tower extreme responses due to the wind loads on blades and tower of parked turbine can be estimated separately and then combined for the estimation of total tower extreme response. In current wind turbine design practice, the tower extreme response due to the wind loads on blades is often represented as a static response under an equivalent static load in terms of a concentrated force and a moment at the tower top. This study presents an improved equivalent static load model with additional distributed inertial force on tower, and introduces the square-root-of-sum-square combination rule, which is shown to provide a better prediction of tower extreme response.

Structural Shape Optimization under Static Loads Transformed from Dynamic Loads (동하중으로부터 변환된 등가정하중을 통한 구조물의 형상최적설계)

  • Park, Ki-Jong;Lee, Jong-Nam;Park, Gyung-Jin
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1262-1269
    • /
    • 2003
  • In structural optimization, static loads are generally utilized although real external forces are dynamic. Dynamic loads have been considered in only small-scale problems. Recently, an algorithm for dynamic response optimization using transformation of dynamic loads into equivalent static loads has been proposed. The transformation is conducted to match the displacement fields from dynamic and static analyses. The algorithm can be applied to large-scale problems. However, the application has been limited to size optimization. The present study applies the algorithm to shape optimization. Because the number of degrees of freedom of finite element models is usually very large in shape optimization, it is difficult to conduct dynamic response optimization with the conventional methods that directly threat dynamic response in the time domain. The optimization process is carried out via interfacing an optimization system and an analysis system for structural dynamics. Various examples are solved to verify the algorithm. The results are compared to the results from static loads. It is found that the algorithm using static loads transformed from dynamic loads based on displacement is valid even for very large-scale problems such as shape optimization.

  • PDF

Structural Shape Optimization under Static Loads Transformed from Dynamic Loads (동하중으로부터 변환된 등가정하중을 통한 구조물의 형상최적설계)

  • Park, Ki-Jong;Lee, Jong-Nam;Park, Gyung-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.8
    • /
    • pp.1363-1370
    • /
    • 2003
  • In structural optimization, static loads are generally utilized although real external forces are dynamic. Dynamic loads have been considered in only small-scale problems. Recently, an algorithm for dynamic response optimization using transformation of dynamic loads into equivalent static loads has been proposed. The transformation is conducted to match the displacement fields from dynamic and static analyses. The algorithm can be applied to large-scale problems. However, the application has been limited to size optimization. The present study applies the algorithm to shape optimization. Because the number of degrees of freedom of finite element models is usually very large in shape optimization, it is difficult to conduct dynamic response optimization with the conventional methods that directly threat dynamic response in the time domain. The optimization process is carried out via interfacing an optimization system and an analysis system for structural dynamics. Various examples are solved to verify the algorithm. The results are compared to the results from static loads. It is found that the algorithm using static loads transformed from dynamic loads based on displacement is valid even for very large-scale problems such as shape optimization.

Preliminary Study on Structural Optimization with Control Variables Using Equivalent Static Loads for Spring-damper Control Systems (등가정하중을 이용한 스프링-댐퍼 제어시스템 구조물의 최적설계에 관한 기초연구)

  • Yoo, Nam-Sun;Jung, Ui-Jin;Park, Gyung-Jin;Kim, Tai-Kyung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.6
    • /
    • pp.619-627
    • /
    • 2014
  • An optimization method is proposed for the simultaneous design of structural and control systems using the equivalent static loads. In the past researches, the control parameters of such feedback gains are obtained to improve some performance in the steady-state. However, the actuators which have position and velocity feedback gains should be designed to exhibit a good performance in the time domain. In other words, the system analysis should be conducted for the transient-state in dynamic manner. In this research, a new equivalent static loads method is presented to treat the control variables as the design variables. The equivalent static loads (ESLs) set is defined as a static load set which generates the same displacement field as that from dynamic loads at a certain time. The calculated sets of ESLs are applied as multiple loading conditions in the optimization process. Several examples are solved to validate the proposed method.

Dynamic Response Optimization of a Mobile Harbor Crane with a Moving Support (지지부가 움직이는 모바일하버용 크레인의 동적 응답 최적설계)

  • Kim, Hyun-Bum;Lee, Jae-Jun;Jang, Hwan-Hak;Park, Gyung-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.5
    • /
    • pp.497-504
    • /
    • 2012
  • The mobile harbor is a new innovative system that delivers containers from a containership to a harbor without good infrastructure. A crane is installed on the deck of the mobile harbor and transfers the containers. The structure of the crane is influenced by the inertia force that occurs from a moving support. Thus an accurate safety verification considering the moving support is required. Lightweight of the crane structure is also significant in the design for low production cost and efficient operation. Dynamic response optimization can be exploited to achieve these two requirements. Equivalent static loads method is employed for dynamic response optimization of the crane. The equivalent static loads method transforms dynamic loads to equivalent static loads, and static response structural optimization with the transformed equivalent static loads are solved. The process proceeds in a cyclic manner. A new method is proposed to consider the moving supports and the structure of the mobile harbor is optimized using the proposed method.

Transformation of Dynamic Loads into Equivalent Static Load based on the Stress Constraint Conditions (응력 구속조건을 고려한 동하중의 등가정하중으로의 변환)

  • Kim, Hyun-Gi;Kim, Euiyoung;Cho, Maenghyo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.26 no.2
    • /
    • pp.165-171
    • /
    • 2013
  • Due to the difficulty in considering dynamic load in the view point of a computer resource and computing time, it is common that external load is assumed as ideal static loads. However, structural analysis under static load cannot guarantee the safety of design of the structures under dynamic loadings. Recently, the systematic method to construct equivalent static load from the given dynamic load has been proposed. Previous study has calculated equivalent static load through the optimization procedure under displacement constraints. However, previously reported works to distribute equivalent static load were based on ad-hoc methods. Improper selection of equivalent static loading positions may results in unreliable prediction of structural design. The present study proposes the selection method of the proper locations of equivalent static loads to dynamically applied loads when we consider transient dynamic structural problems. Moreover, it is appropriate to take into account the stress constraint as well as displacement constraint condition for the safety design. But the previously reported studies of equivalent static load design methods considered only displacement constraint conditions but not stress constraint conditions. In the present study we consider not only displacement constraint but also stress constraint conditions. Through a few numerical examples, the efficiency and reliability of proposed scheme is verified by comparison of the equivalent stress between equivalent static loading and dynamic loading.

Wind load effects and equivalent static wind loads of three-tower connected tall buildings based on wind tunnel tests

  • Ke, Shitang;Wang, Hao;Ge, Yaojun
    • Structural Engineering and Mechanics
    • /
    • v.58 no.6
    • /
    • pp.967-988
    • /
    • 2016
  • Due to the significant aerodynamic interference from sub-towers and surrounding tall buildings, the wind loads and dynamic responses on main tower of three-tower connected tall building typically change especially compared with those on the isolated single tall building. This paper addresses the wind load effects and equivalent static wind loads (ESWLs) of three-tower connected tall building based on measured synchronous surface pressures in a wind tunnel. The variations of the global shape coefficients and extremum wind loads of main tower structure with or without interference effect under different wind directions are studied, pointing out the deficiency of the traditional wind loads based on the load codes for the three-tower connected tall building. The ESWLs calculation method based on elastic restoring forces is proposed, which completely contains the quasi-static item, inertia item and the coupled effect between them. Then the wind-induced displacement and acceleration responses for main tower of three-tower connected tall building in the horizontal and torsional directions are investigated, subsequently the structural basal and floor ESWLs under different return periods, wind directions and damping ratios are studied. Finally, the action mechanism of interference effect on structural wind effects is investigated. Main conclusions can provide a sientific basis for the wind-resistant design of such three-tower connected tall building.

Transformation of a Dynamic Load into an Equivalent Static Load and Shape Optimization of the Road Arm in Self-Propelled Howitzer (자주포 로드암 동하중의 상당 정하중으로의 변환 및 형상최적설계)

  • Choe, U-Seok;Gang, Sin-Cheon;Sin, Min-Jae;Park, Gyeong-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.12
    • /
    • pp.3767-3781
    • /
    • 1996
  • Generally, dynamic loads are applied to real structures. Since the analysis with the dynamic load is extremely difficult, static loads are utilized by proper conversions of the dynamic loads. The dynamic loads are usually converted ot static loads by safety foactors of experiences. However, it may increase weight and decrease reliability. In this study, a method is proposed for the conversion process. An equivalent static load is calculated ot generate a same maximum displacement. The method is verified through numerical tests on a spring-mass systems of one and multi degrees-of freedom. It has been found that the duration time of the loads and the natural frequencies of the structures are critical in the conversion process. A road arem is a self-propelled howizer is selected for the application of the proposed method. The shape of the road arm is optimized under the converted static loads.