• Title/Summary/Keyword: Equivalent Static Approach

Search Result 50, Processing Time 0.029 seconds

Non-Gaussian approach for equivalent static wind loads from wind tunnel measurements

  • Kassir, Wafaa;Soize, Christian;Heck, Jean-Vivien;De Oliveira, Fabrice
    • Wind and Structures
    • /
    • v.25 no.6
    • /
    • pp.589-608
    • /
    • 2017
  • A novel probabilistic approach is presented for estimating the equivalent static wind loads that produce a static response of the structure, which is "equivalent" in a probabilistic sense, to the extreme dynamic responses due to the unsteady pressure random field induced by the wind. This approach has especially been developed for complex structures (such as stadium roofs) for which the unsteady pressure field is measured in a boundary layer wind tunnel with a turbulent incident flow. The proposed method deals with the non-Gaussian nature of the unsteady pressure random field and presents a model that yields a good representation of both the quasi-static part and the dynamical part of the structural responses. The proposed approach is experimentally validated with a relatively simple application and is then applied to a stadium roof structure for which experimental measurements of unsteady pressures have been performed in boundary layer wind tunnel.

Simple method for static and dynamic analyses of guyed towers

  • Meshmesha, H.;Sennah, K.;Kennedy, J.B.
    • Structural Engineering and Mechanics
    • /
    • v.23 no.6
    • /
    • pp.635-649
    • /
    • 2006
  • The static and dynamic responses of guyed telecommunication towers can be determined by using two models, the space truss element model, and the equivalent beam-column element model. The equivalent beam-column analysis is based on the determination of the equivalent shear, torsion, and bending rigidities as well as the equivalent area of the guyed mast. In the literature, two methods are currently available to determine the equivalent properties of lattice structures, namely: the unit load method, and the energy approach. In this study, an equivalent beam-column analysis is introduced based on an equivalent thin plate approach for lattice structures. A finite-element modeling, using suitably modified ABAQUS software, is used to investigate the accuracy of utilizing the different proposed methods in determining the static and dynamic responses of a guyed tower of 364.5-meter high subjected to static and seismic loading conditions. The results from these analyses are compared to those obtained from a finite-element modeling of the actual structure using 3-D truss and beam elements. Good agreement is shown between the different proposed beam-column models, and the model of the actual structure. However, the proposed equivalent thin plate approach is simpler to apply than the other two approaches.

Evaluation of Equivalent-Static Floor Acceleration for Seismic Design of Non-Structural Elements (비구조요소의 내진설계를 위한 등가정적 층가속도 평가)

  • Jun, Su-Chan;Lee, Cheol-Ho;Bae, Chang-Jun;Kim, Sung-Yong
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.36 no.3
    • /
    • pp.121-128
    • /
    • 2020
  • In this paper, the ASCE 7 equivalent static approach for seismic design of non-structural elements is critically evaluated based on the measured floor acceleration data, theory of structural dynamics, and linear/nonlinear dynamic analysis of three-dimensional building models. The analysis of this study on the up-to-date database of the instrumented buildings in California clearly reveals that the measured database does not well corroborate the magnitude and the profile of the floor acceleration as proposed by ASCE 7. The basic flaws in the equivalent static approach are illustrated using elementary structural dynamics. Based on the linear and nonlinear dynamic analyses of three-dimensional case study buildings, it is shown that the magnitude and distribution of the PFA (peak floor acceleration) can significantly be affected by the supporting structural characteristics such as fundamental period, higher modes, structural nonlinearity, and torsional irregularity. In general, the equivalent static approach yields more conservative acceleration demand as building period becomes longer, and the PFA distribution in long-period buildings tend to become constant along the building height due to the higher mode effect. Structural nonlinearity was generally shown to reduce floor acceleration because of its period-lengthening effect. Torsional floor amplification as high as 250% was observed in the building model of significant torsional irregularity, indicating the need for inclusion of the torsional amplification to the equivalent static approach when building torsion is severe. All these results lead to the conclusion that, if permitted, dynamic methods which can account for supporting structural characteristics, should be preferred for rational seismic design of non-structural elements.

Equivalent Continuum Modeling Methods for Flat Corrugated Panels (평판형 주름판넬에 대한 등가 연속체 모델링기법)

  • 이상윤;이우식
    • Journal of the Korean Society for Railway
    • /
    • v.3 no.2
    • /
    • pp.43-50
    • /
    • 2000
  • The corrugated panels are the prime candidate structure for the floor, roof and wall of Korean high speed train. The equivalent continuum modeling approach panels can be used for the efficient design and evaluation of their structural characteristics. The equivalent continuum models, derived from the true complex corrugated panels, should have the same structural behavior as the original structures have. This paper briefly reviews three representative continuum modeling methods: the static analysis method and two plate-models based on modal analysis methods (MAM). These methods are evaluated through some numerical examples by comparing the natural frequencies and static deflections. It is observed that the plate-model based on Rayleigh-Ritz method seems to provide the best results when used in conjunction with the cantilever-type boundary conditions. The equivalent elastic constants of various corrugated panels, depending on the changes in their configurations, are tabulated for efficient use in structural design.

  • PDF

Sensorless IPMSM Control Based on an Extended Nonlinear Observer with Rotational Inertia Adjustment and Equivalent Flux Error Compensation

  • Mao, Yongle;Yang, Jiaqiang;Yin, Dejun;Chen, Yangsheng
    • Journal of Power Electronics
    • /
    • v.16 no.6
    • /
    • pp.2150-2161
    • /
    • 2016
  • Mechanical and electrical parameter uncertainties cause dynamic and static estimation errors of the rotor speed and position, resulting in performance deterioration of sensorless control systems. This paper applies an extended nonlinear observer to interior permanent magnet synchronous motors (IPMSM) for the simultaneous estimation of the rotor speed and position. Two compensation methods are proposed to improve the observer performance against parameter uncertainties: an on-line rotational inertia adjustment approach that employs the gradient descent algorithm to suppress dynamic estimation errors, and an equivalent flux error compensation approach to eliminate static estimation errors caused by inaccurate electrical parameters. The effectiveness of the proposed control strategy is demonstrated by experimental tests.

Wind-induced responses and equivalent static wind loads of tower-blade coupled large wind turbine system

  • Ke, S.T.;Wang, T.G.;Ge, Y.J.;Tamura, Y.
    • Structural Engineering and Mechanics
    • /
    • v.52 no.3
    • /
    • pp.485-505
    • /
    • 2014
  • This study aimed to develop an approach to accurately predict the wind models and wind effects of large wind turbines. The wind-induced vibration characteristics of a 5 MW tower-blade coupled wind turbine system have been investigated in this paper. First, the blade-tower integration model was established, which included blades, nacelle, tower and the base of the wind turbine system. The harmonic superposition method and modified blade element momentum theory were then applied to simulate the fluctuating wind field for the rotor blades and tower. Finally, wind-induced responses and equivalent static wind loads (ESWL) of the system were studied based on the modified consistent coupling method, which took into account coupling effects of resonant modes, cross terms of resonant and background responses. Furthermore, useful suggestions were proposed to instruct the wind resistance design of large wind turbines. Based on obtained results, it is shown from the obtained results that wind-induced responses and ESWL were characterized with complicated modal responses, multi-mode coupling effects, and multiple equivalent objectives. Compared with the background component, the resonant component made more contribution to wind-induced responses and equivalent static wind loads at the middle-upper part of the tower and blades, and cross terms between background and resonant components affected the total fluctuation responses, while the background responses were similar with the resonant responses at the bottom of tower.

Probability-based prediction of residual displacement for SDOF using nonlinear static analysis

  • Feng, Zhibin;Gong, Jinxin
    • Earthquakes and Structures
    • /
    • v.22 no.6
    • /
    • pp.571-584
    • /
    • 2022
  • The residual displacement ratio (RDRs) response spectra have been generally used as an important means to evaluate the post-earthquake repairability, and the ratios of residual to maximum inelastic displacement are considered to be more appropriate for development of the spectra. This methodology, however, assumes that the expected residual displacement can be computed as the product of the RDRs and maximum inelastic displacement, without considering the correlation between these two variables, which inevitably introduces potential systematic error. For providing an adequately accurate estimate of residual displacement, while accounting for the collapse resistance performance prior to the repairability evaluation, a probability-based procedure to estimate the residual displacement demands using the nonlinear static analysis (NSA) is developed for single-degree-of-freedom (SDOF) systems. To this end, the energy-based equivalent damping ratio used for NSA is revised to obtain the maximum displacement coincident with the nonlinear time history analysis (NTHA) results in the mean sense. Then, the possible systematic error resulted from RDRs spectra methodology is examined based on the NTHA results of SDOF systems. Finally, the statistical relation between the residual displacement and the NSA-based maximum displacement is established. The results indicate that the energy-based equivalent damping ratio will underestimate the damping for short period ranges, and overestimate the damping for longer period ranges. The RDRs spectra methodology generally leads to the results being non-conservative, depending on post-yield stiffness. The proposed approach emphasizes that the repairability evaluation should be based on the premise of no collapse, which matches with the current performance-based seismic assessment procedure.

New Equivalent Static Analysis Method of Dynamic Behavior during Progressive Collapse (연쇄붕괴의 동적거동을 고려한 새로운 등가정적해석 기법)

  • Kim, Chee-Kyeong;Lee, Jae-Cheol
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.3
    • /
    • pp.239-246
    • /
    • 2007
  • In this paper a new equivalent static analysis method of dynamic behavior during progressive collapse is presented. The proposed analysis method uses the equivalent nodal load for the element stiffness which represents the dynamic behavior influence caused by the deletion of elements during progressive collapse analysis. The proposed analysis method improves the efficiency of progressive collapse analysis haying the iterative characteristic because the inverse of the structural stiffness matrix is roused in the reanalysis. By comparing the results obtained by this analysis method with those of GSA code analysis and time history analysis, it is shown that the results obtained by this analysis method more closely approach to those of time history analysis than by GSA code analysis.

Static Analysis of Trapezoidal Corrugated Plates under Uniformly Distributed Load (균일 분포하중을 받는 사다리꼴 주름판의 정적 해석)

  • Kim, Young-Wann
    • Journal of Power System Engineering
    • /
    • v.18 no.1
    • /
    • pp.99-105
    • /
    • 2014
  • In this paper, the static characteristics of the trapezoidal corrugated plate under uniformly distributed pressure are investigated by the analytical method. Because the corrugated plate is very flexible in the corrugation direction and stiff in the transverse direction, the corrugated plate is treated as the orthotropic plate. This equivalent orthotropic plate must include both the extensional and flexural effect to obtain the precise solution. The effective extensional and flexural stiffness of the trapezoidal corrugated plate are derived to consider these effects in the analysis. To demonstrate the validity of the proposed approach, the comparison is made with the previously published results. Some numerical results are presented to check the effect of the geometric properties.

An Equivalent Mutation Detection Method for Class-Level Mutation Analysis (클래스 수준 뮤테이션 분석을 위한 동등 뮤턴트 검출 기법)

  • Jang, Won-Ho;Ma, Yu-Seung;Kwon, Yong-Rae
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.5
    • /
    • pp.571-575
    • /
    • 2010
  • Mutation testing is known as a very useful technique for measuring the effectiveness of a test data set and finding weak points of the test set. An equivalent mutant degrades the effectiveness of mutation testing. Elimination of equivalent mutants is a very important problem in mutation testing.In this paper, we proposed kinds of methods for detecting class-level equivalent mutants. These methods judge the equivalency of mutants through structural informations and behavioral information of the original program and mutants using static analysis. We found that our approach can detect not a few of equivalent mutants and expected that the cost of mutation testing can be saved considerably.