• Title/Summary/Keyword: Equivalent Mechanical System

Search Result 391, Processing Time 0.023 seconds

Evaluation of Aerodynamic Characteristics of NREL Phase VI Rotor System Using 2-Way Fluid-Structure Coupled Analysis Based on Equivalent Stiffness Model (등가강성모델 기반의 양방향 유체구조 연성해석을 적용한 NREL Phase VI 풍력 로터 시스템의 공력특성 평가)

  • Cha, Jin-Hyun;Song, Woo-Jin;Kang, Beom-Soo;Kim, Jeong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.7
    • /
    • pp.731-738
    • /
    • 2012
  • In this study, the evaluation of the aerodynamic characteristics of the NREL Phase VI Rotor System has been performed, for the 7 m/s upwind case using commercial FEA and CFD tools which are ANSYS Mechanical 12.1 and CFX 12.1. The initial operating conditions of the rotor blade include a $3^{\circ}$ tip pitch angle. A numerical simulation was carried out on only the rotor parts, excluding the tower structure based on the equivalent stiffness model, to consider the aeroelastic effect for the numerical simulation using the loosely coupled 2-way fluid-structure interaction method. The blade root bending moment was monitored in real time to obtain reasonable results. To verify the analysis results, the numerical simulation results were compared with the measurements in the form of the root bending moment and the pressure distributions of the NREL/NASA Ames wind tunnel test.

Vibration Analysis for Oil Gear Motor considering Pulsation Pressure (맥동압을 고려한 냉각팬 오일 기어모터의 진동해석)

  • Shin, Yoo-In;Yi, Chung-Seob;Jeong, Ung-Gi;Suh, Jeong-Se;Song, Chul-Ki
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.7
    • /
    • pp.793-798
    • /
    • 2012
  • Oil gear pump is used for the cooling pump system of commercial vehicle. The hydraulic pulsation pressure of oil gear pump is one of the most important reasons for the vibration and noise of the pump. In this study, the several hydraulic factors acting on oil gear motor are analyzed by CFD in operation of cooling system. Forced vibration analysis due to hydraulic pulsation pressure is analyzed by FEA for predicting deformation and equivalent stress.

Mechanical and Thermal Properties of Cured Specimen or DGEBA/DDM System (DGEBA/DDM계 에폭시수지 경화 시험편의 기계적 및 열적특성)

  • Kim, Kong-Soo;Park, Jun-Ha;Kim, Ki-Wun;Kim, Young-Jun
    • Elastomers and Composites
    • /
    • v.33 no.1
    • /
    • pp.10-16
    • /
    • 1998
  • In DGEBA/DDM system, the curing specimen are many curing factors which can affect on thermal and mechanical properties. This study was performed to prove the effect on curing specimen prepared by changing of the curing factors which are curing time and temperature of DGEBA/DDM system. As a result on thermal and mechanical properties, flexural strength, modulus and glass transition temperature (Tg) were increased with curing time and temperature were increased. It was found that the optimum curing condition of DGEBA/DDM system cure at $150^{\circ}C$ for 3hrs at equivalent ratio of 1/1.

  • PDF

Energy-based Approach to Power Transfer System Analysis

  • Moon, Young-Hyun;Lee, Jong-Gi;Kwon, Yong-Jun
    • KIEE International Transactions on Power Engineering
    • /
    • v.4A no.4
    • /
    • pp.227-235
    • /
    • 2004
  • This paper presents a new theoretical approach to energy-based power system analysis for multibus power transmission systems. On the basis of mechanical analogy, an exact energy integral expression is derived for lossy multi-bus systems through rigorous energy analysis. A simple rigid rod model of mechanical power transfer system is introduced to address the physical meanings of potential energy terms associated with transfer conductances as well as transfer susceptances. Finally, energy-based analysis has been proposed to show that the energy function has all information of the power system characteristics.

Flow Analysis on Near Field of Elliptic Jet Using a Single-Frame PIV (고해상도 PIV 기법을 이용한 타원형 제트의 근접 유동장 해석)

  • Shin, Dae-Sig;Lee, Sang-Joon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.3
    • /
    • pp.459-466
    • /
    • 2000
  • Flow characteristics of turbulent elliptic jets were experimentally investigated using a single-frame PIV system. A sharp-edged elliptic nozzle with aspect ratio(AR) of 2 was tested and the experimental results were compared with those of circular jet having the same equivalent diameter($D_e$). The Reynolds number based on the nozzle exit velocity and nozzle equivalent diameter was about $1{\times}10^4$. The spreading rate along the major and minor axis are different remarkably. The jet half width along the major axis decreases at first and then increases with going downstream. But along the minor axis the jet width increases steadily. The elliptic jet of AR=2 has one switching points at $X/D_e=2$ within the near field. Turbulence properties are also found to be significantly different along the major and minor axis planes.

Durability Analysis on Fatigue of Caliper Cylinder (캘리퍼 실린더의 피로에 대한 내구성 해석)

  • Han, Moonsik;Cho, Jaeung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.2
    • /
    • pp.208-213
    • /
    • 2015
  • In this study, two models due to the configuration of caliper cylinder among the parts of automotive brake system are studied by structural and fatigue analysis. As the maximum equivalent stress at model 2 becomes 1.5 times lower than model 1, model 2 can endure load higher than model 1. In case of fatigue damage analysis on model 1 and 2, model 1 has the damage area more than model 2. Fatigue damage at model 1 happen more than model 2. These study results can be effectively utilized with the design on caliper cylinder by anticipating prevention against its damage and investigating durability.

Equivalent mechanical model of smart actuators and optimal operating conditions (지능형 공진작동기의 기계적상사와 최적작동조건)

  • Kim, Jun-Sik
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.285-287
    • /
    • 2011
  • 본 논문에서는 지능형 작동기의 효율적 설계와 특성예측을 위하여 기계적 상사 모델을 개발하고, 작동기의 최적작동 조건을 고찰한다. 먼저 지능형 작동기의 기계적 상사는 단순한 2자유도 스프링-메스-뎀퍼 시스템으로 등가 시스템을 구현하였다. 이 때 스프링 강성계수는 시스템의 강성 또는 전기-기계 연성계수 등으로 상사되며, 전기회로 구성품 등은 질량, 뎀퍼 등으로 상사되어진다. 단순화된 기계적 상사모델을 이용하여 작동조건에서의 전기회로 구성품의 튜닝을 최적화 할 수 있다. 특히 작동기의 공진주파수에서의 특성을 고려하여 최적조건을 도출함으로써 그 성능을 극대화 할 수 있다.

  • PDF

Predicting Thermo-mechanical Characteristics from the 2nd Phase Fraction of Al-AlN Composites for LED Heat Sinks with FEM (유한요소해석을 이용한 방열용 Al-AlN 복합재의 제2상 분율에 따른 열-기계적 특성예측)

  • Yoon, Juil
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.5
    • /
    • pp.137-142
    • /
    • 2018
  • With the development of the electronic-materials industry, multi-functional metal-composite materials with high thermal conductivity and low thermal expansion must be developed for high reliability and high life expectancy. This paper is a preliminary study on the manufacturing technology of gas reaction control composite material, focusing on the prediction of the equivalent thermal properties of Al-AlN composite materials. Numerical equivalent property values are obtained by using finite element analysis and compared with theoretical formulas. Al-AlN composite materials should become the optimal composite material when the proportion of the reinforcing phase is less than 0.5.

Research of the impact of material and flow properties on fluid-structure interaction in cage systems

  • Mehmet Emin Ozdemir;Murat Yaylaci
    • Wind and Structures
    • /
    • v.36 no.1
    • /
    • pp.31-40
    • /
    • 2023
  • This paper investigates the mechanical behavior of full-scale offshore fish cages under hydrodynamic loads. To simulate different cases, different materials were used in the fish cage and analyzed under different flow velocities. The cage system is studied in two parts: net cage and floating collar. Analyses were performed with the ANSYS Workbench program, which allows the Finite Element Method (FEM) and Computational Fluid Dynamics (CFD) method to be used together. Firstly, the fish cage was designed, and adjusted for FSI: Fluid (Fluent) analysis. Secondly, mesh structures were created, and hydrodynamic loads acting on the cage elements were calculated. Finally, the hydrodynamic loads were transferred to the mechanical model and applied as a pressure on the geometry. In this study, the equivalent (von Mises) stress, equivalent strain, and total deformation values of cage elements under hydrodynamic loads were investigated. The data obtained from the analyses were presented as figures and tables. As a result, it has been shown that it is appropriate to use all the materials examined for the net cage and the floating collar.

Analysis of multi leaf spring based on contact mechanics - a novel approach

  • Kumaravelan, R.;Ramesh, S.;Gandhi, V.C. Sathish;Agu, M. Joemax;Thanmanaselvi, M.
    • Structural Engineering and Mechanics
    • /
    • v.47 no.3
    • /
    • pp.443-454
    • /
    • 2013
  • A leaf spring, especially the longitudinal type is liable and persistent element in automotive suspension system. In the present scenario the composite materials are widely used in the automobile industries has shown a great interest in the replacement of steel spring due to high strength by weight ratio. Previous investigations focused on stresses and displacement analysis of single leaf spring for different materials. The present work aims to design and analysis of leaf spring for two different cases by considering the Young's modulus to yield strength ratio. In the first case the analysis deals with the design and analysis of a single cantilever solid triangle beam which is an equivalent beam of a spring with three leaves having uniform strength. In the second case a 3-beams of rectangular cross section has been considered which is equivalent to a spring with three leaves. The analysis was carried out based on contact mechanics approach. The results were compared, that the fiberglass composite leaf spring is suitable for high loading capacity, reliability and efficiency.