• 제목/요약/키워드: Equivalent Mechanical Model

검색결과 498건 처리시간 0.022초

무릎인공관절의 하중에 따른 내구성에 관한 해석적 연구 (Analytical Study on Durability due to the Load of Artificial Knee Joint)

  • 조재웅
    • 한국융합학회논문지
    • /
    • 제5권2호
    • /
    • pp.7-11
    • /
    • 2014
  • 본 연구에서는 텅스텐합금강의 상부구조와 폴리에틸렌소재로 구성된 하부구조의 무릎 인공관절이 하중을 받았을 때에 인공관절의 하중분포와 인공관절의 설치를 위한 지지구멍에 가해지는 응력분포에를 유한요소해석에 의하여 연구하였으며, 이러한 결과들을 이용하여 실물에 대한 실험을 위한 기초자료를 얻을 수 있었다. 상부구조의 모서리 끝부분부터 하중이 집중되어 크랙이 발생되며 이는 의학계에 보고된 인공관절파손에 의한 조직괴사사례와 그 거동이 일치하였다.

디스크 스프링의 적층 배열에 따른 완충장치의 감쇠에 관한 연구 (On the Damping of A Shock Absorption Device Composed of Disk Spring Stacks)

  • 최명진;고석훈
    • 한국가스학회지
    • /
    • 제12권4호
    • /
    • pp.46-51
    • /
    • 2008
  • 본 연구에서는 비선형 디스크 스프링과 고무링으로 구성된 완충장치의 감쇠에 관하여 연구하였다. 고무링의 마찰력과 디스크 스프링의 이력현상을 측정하여, 디스크 스프링의 적층 배열에 따른 이력곡선을 근사하고, 소산되는 에너지의 양을 추산하였다. 마찰력과 소산 에너지에 근거하여 네 종류의 감쇠 해석모델을 제시하였으며, 각각의 모델에 대한 충격응답을 고찰하였다. 고무링의 마찰력보다는 디스크 스프링의 이력현상이 완충장치의 감쇠거동에서 더 큰 영향을 미치었다. 가장 실용적인 감쇠 모델로는 소산되는 총 에너지의 양에 근거한 등가 점성 감쇠 모델이 다른 감쇠 모델보다 적합하다는 결론을 얻었다.

  • PDF

In-plane response of masonry infilled RC framed structures: A probabilistic macromodeling approach

  • De Domenico, Dario;Falsone, Giovanni;Laudani, Rossella
    • Structural Engineering and Mechanics
    • /
    • 제68권4호
    • /
    • pp.423-442
    • /
    • 2018
  • In this paper, masonry infilled reinforced concrete (RC) frames are analyzed through a probabilistic approach. A macro-modeling technique, based on an equivalent diagonal pin-jointed strut, has been resorted to for modelling the stiffening contribution of the masonry panels. Since it is quite difficult to decide which mechanical characteristics to assume for the diagonal struts in such simplified model, the strut width is here considered as a random variable, whose stochastic characterization stems from a wide set of empirical expressions proposed in the literature. The stochastic analysis of the masonry infilled RC frame is conducted via the Probabilistic Transformation Method by employing a set of space transformation laws of random vectors to determine the probability density function (PDF) of the system response in a direct manner. The knowledge of the PDF of a set of response indicators, including displacements, bending moments, shear forces, interstory drifts, opens an interesting discussion about the influence of the uncertainty of the masonry infills and the resulting implications in a design process.

벨로우즈의 장착에 따른 자동차 배기계의 동특성 개선 및 벨로우즈의 최적위치 평가 (Improvement of the Vibrational Characteristics According to Attachment of Bellows and Evaluation of Bellows Optimal Position in Automobile Exhaust System)

  • 고병갑;이완익;박경진
    • 한국자동차공학회논문집
    • /
    • 제2권3호
    • /
    • pp.21-32
    • /
    • 1994
  • The Problem of mechanical vibration is investigated for an automotive exhaust system. The vibrational reduction effect is systematically evaluated according to the attachment of the exhaust system. Moreover, the optimal attachment position of bellows is determined from the viewpoint of vibration isolation. The structure is analysed by the finite element technique where the geometry, the mass, the stiffness and the damping properties of the exhaust pipe are modeled. The validity of the developed model is verified by comparing with the experimental results. An optimization is carried out by the quadratic approximation algorithm. The reaction transferred to an automobile body by the hanger is considered ad the objective function. It is shown that the exhaust system which has the bellows at the optimal position is more effective for the vibrational characteristics than the others. It is also proved that this analytical method is quite useful in the design stage of the exhaust system.

  • PDF

보조극을 가지는 자동차 시동용 직류 전동기의 특성분석 (Characteristic Analysis of Automotive Starter DC Motor with Auxiliary Pole Core)

  • 하재평;하경호;홍정표;김진구
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제52권3호
    • /
    • pp.107-115
    • /
    • 2003
  • This paper deals with the effect of the auxiliary pole core in the automotive starter motor on its characteristics. This motor is excited by the permanent magnet and has auxiliary pole core in the stator. The auxiliary pole core is a device to increase the effective flux to obtain the starling torque and prevent the demagnetization of the permanent magnet from the starting current. It Is important to design the auxiliary pore core. And overhang structure causes the electromagnetic phenomenon of 3-dimensional flux Path. Therefore. the characteristic analysis is achieved by the 2-dimensional Finite Element Method (FEM) with the compensated model and the 3-dimensional Equivalent Magnet Circuit Network (3D EMCN). The mechanical loss and the brush and coil resistance are separated from the various experiment of the tested motor, and then these factor are reflected on the analysis results. The validity of the proposed analysis method is verified by comparing the experimental and analysis results. The effects of the design parameters related to the auxiliary pole cote on the motor performance are analyzed by the proposed method.

Seismic analysis in pad concrete foundation reinforced by nanoparticles covered by smart layer utilizing plate higher order theory

  • Taherifar, Reza;Zareei, Seyed Alireza;Bidgoli, Mahmood Rabani;Kolahchi, Reza
    • Steel and Composite Structures
    • /
    • 제37권1호
    • /
    • pp.99-115
    • /
    • 2020
  • This article deals with the dynamic analysis in pad concrete foundation containing Silica nanoparticles (SiO2) subject to seismic load. In order to control the foundation smartly, a piezoelectric layer covered the foundation. The weight of the building by a column on the foundation is assumed with an external force in the middle of the structure. The foundation is located in soil medium which is modeled by spring elements. The Mori-Tanaka law is utilized for calculating the equivalent mechanical characteristics of the concrete foundation. The Kevin-Voigt model is adopted to take into account the structural damping. The concrete structure is modeled by a thick plate and the governing equations are deduced using Hamilton's principle under the assumption of higher-order shear deformation theory (HSDT). The differential quadrature method (DQM) and the Newmark method are applied to obtain the seismic response. The effects of the applied voltage to the smart layer, agglomeration and volume percent of SiO2 nanoparticles, damping of the structure, geometrical parameters and soil medium of the structure are assessed on the dynamic response. It has been demonstrated by the numerical results that by applying a negative voltage, the dynamic deflection is reduced significantly. Moreover, silica nanoparticles reduce the dynamic deflection of the concrete foundation.

형상기억합금 메쉬 와셔를 이용한 우주용 냉각기 진동절연기의 발사 진동 및 충격 저감 성능검증 (Verification of Launch Vibration and Shock Isolation Performance for Spaceborne Compressor Vibration Isolator with SMA Mesh Washer)

  • 이명재;한제헌;오현웅
    • 한국소음진동공학회논문집
    • /
    • 제24권7호
    • /
    • pp.517-524
    • /
    • 2014
  • Micro-vibration induced by on-board equipments such as fly-wheel and cryogenic cooler with mechanical moving parts affects the image quality of high-resolution observation satellite. Micro-vibration isolation system has been widely used for enhancing the pointing performance of observation satellites. In general, the micro-vibration isolation system requires a launch locking mechanism additionally to guarantee the structural safety of mission payloads supported by the isolation system with low stiffness under launch environment. In this study, we propose a passive launch and on-orbit vibration isolation system using shape memory alloy mesh washers for the micro-vibration isolation of spaceborne compressor, which does not require the additional launch locking mechanism. The basic characteristics of the isolator were measured in static and free vibration tests of the isolator, and a simple equivalent model of the isolator was proposed. The effectiveness of the isolator design in a launch environment was demonstrated through sine vibration, random vibration and shock tests.

동특성 변화를 이용한 감쇠 구조물의 손상예측 (Prediction of the Damage in the Structure with Damping Using the Modified Dynamic Characteristics)

  • 이정윤
    • 한국소음진동공학회논문집
    • /
    • 제22권11호
    • /
    • pp.1144-1151
    • /
    • 2012
  • A damage in structure alters its dynamic characteristics. The change is characterized by changes in the modal parameter, i.e., modal frequencies, modal damping value and mode shape associated with each modal frequency. Changes also occur in some of the structural parameters; namely, the mass, damping, stiffness matrices of the structure. In this paper, evaluation of changes in stiffness matrix of a structure is presented as a method not only for identifying the presence of the damage but also locating the damage. It is shown that changed stiffness matrix can be accurately estimated a sensitivity coefficient matrix derived from modifying mode shapes, First, with 4 story shear structure models, the effect of presence of damage in a structure on its stiffness matrix is studied. By using these analytical model, the effectiveness of using change of stiffness matrix in detecting and locating damages is demonstrated. To validate the predicted changing stiffness and its location, the obtained results are compared to the reanalysis result which shows good agreement.

RESONANT MOTION OF A PARTICLE ON AN AXISYMMETRIC CONTAINER SUBJECT TO HORIZONTAL EXCITATION

  • Suh, Yong-Kweon
    • Journal of Theoretical and Applied Mechanics
    • /
    • 제2권1호
    • /
    • pp.51-70
    • /
    • 1996
  • This study is generalization of the study of Miles[Physica 11D, 1984, pp.309-323]on the resonant motion of a spherical pendulum, which is equivalent to a particle on a spherical container subject to a linear, horizontal excitation. This study covers an arbitrary shape of container and a more general excitation (horizontal but elliptic motion). The averaging method is applied to reduce the governing equations to an autonomous system with cubic nonlinear terms, under the assumption of small amplitude of the container motion. It is shown that both the container shape and the excitation pattern affect the particle dynamics. Under the linear excitation, the anharmonic motion of the particle is possible only for a certain finite range of the parameter a controling the container shape. Stability of the particle's harmonic motion is also influenced by the excitation pattern; as the excitation trajectory becomes closer to a circle, the particle's motion has a stronger tendency to become stable and to follow the rotational direction of the excitation. Under a circular excitation, the motion is always stable and circular with the same rotational direction as the excitation. Analogy between the present model and that of the surface wave inside a circular is studied quantitatively.

플라스틱 판형 열교환기의 성능에 관한 실험적 연구 (An Experimental Study on the Performance of Plastic Plate Heat Exchanger)

  • 유성연;정민호;김기형;이제묘
    • 설비공학논문집
    • /
    • 제17권2호
    • /
    • pp.117-124
    • /
    • 2005
  • Aluminum plate heat exchanger, rotary wheel heat exchanger, and heat pipe heat exchanger have been used (or ventilation heat recovery in the air-conditioning system. The purpose of this research is to develop high efficiency plastic plate heat exchanger which can substitute aluminum plate heat exchanger. Because thermal conductivity of plastic is quite small compared to that of aluminum, various heat transfer enhancement techniques are applied in the design of plastic plates. Five types of heat exchanger model are designed and manufactured, which are plate type, plate-fin type, turbulent promoter type, corrugate type, and dimple type. Thermal performance and pressure loss of each heat exchangers are measured in various operating conditions, and compared each other. Test results show that heat transfer performance of corrugate type, turbulent promoter type, and dimple type are increases about $43\%$, $14\%$, and $33\%$ at the equivalent fan power compared to those of plate type, respectively. On the other hand, the heat transfer performance of plate-fin type decreases $9\%$ because fins can not play their own role.