• Title/Summary/Keyword: Equivalent Mechanical Model

Search Result 496, Processing Time 0.026 seconds

A Study on the Analysis for Fluid Path Design of the Rotor considering Electrical Losses of High-Tc Superconducting Synchronous Motor (고온초전도동기모터의 전기적 손실에 따른 회전자의 유로 설계에 관한 연구)

  • Yoon, Yong-Soo;Song, Myung-Kon;Jang, Won-Kap;Chang, In-Bae;Lee, Sang-Jin;Ko, Tae-Kuk
    • Proceedings of the KIEE Conference
    • /
    • 1998.07a
    • /
    • pp.98-100
    • /
    • 1998
  • This paper presents the fluid characteristics simulation and design guide line of the fluid path inside the rotor, which has an high-Tc superconducting field winding using Ag sheathed BSCCO-2223. The analysis was conducted with an equivalent model of the high-Tc superconducting synchronous motor under transition condition that occurs during the load varying from 250watt to 500watt. The results show that the designed fluid circulation system performs adequately in maintaining the superconducting state in the winding.

  • PDF

A Study on the Analysis for Electrical Losses of the Rotor considering Time Varying Field of High Tc Superconducting Synchronous Motor (고온초전도동기모터의 시변자계에 따른 회전자의 손실 해석에 관한 연구)

  • Song, Myung-Kon;Yoon, Yong-Soo;Jang, Won-Kap;Chang, In-Bae;Lee, Sang-Jin;Ko, Tae-Kuk
    • Proceedings of the KIEE Conference
    • /
    • 1998.07a
    • /
    • pp.340-342
    • /
    • 1998
  • This paper presents the ac losses simulation in the rotor having an high-Tc superconducting field winding using Ag sheathed Bi-2223. The analysis was conducted with an equivalent model of the high-Tc superconducting motor under transition condition during the load that varies from 250watt to 500watt. The simulation results show that the transient state lasts for about 2 seconds, and the ac losses decreased exponentially from the initial value above 2 watts.

  • PDF

Early-Age Behavior of Base Restrained RC Walls (철근콘크리트 벽체의 초기재령 거동 해석)

  • 곽효경;하수준
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.10a
    • /
    • pp.251-258
    • /
    • 2003
  • The early -age behavior of base restrained reinforced concrete (RC) walls is analyzed using a three-dimensional finite element method in this study. After calculating the temperature and internal relative humidity variations of an RC wall, determination of stresses due to thermal gradients, differential drying shrinkage, and average drying shrinkage is followed, and the relative contribution of these three stress components to the total stress is compared. The mechanical properties of early-age concrete, determined from many experimental studies, are taken into consideration, and a discrete reinforcing steel derived using the equivalent nodal force concept is also used to simulate the cracking behavior of RC walls. In advance, to Predict the crack spacing and maximum crack width in a base restrained RC wall, an analytical model which can simulate the post-cracking behavior of an RC tension member is introduced on the basis of the energy equilibrium before and after cracking of concrete.

  • PDF

A novel story on rock slope reliability, by an initiative model that incorporated the harmony of damage, probability and fuzziness

  • Wang, Yajun
    • Geomechanics and Engineering
    • /
    • v.12 no.2
    • /
    • pp.269-294
    • /
    • 2017
  • This study aimed to realize the creation of fuzzy stochastic damage to describe reliability more essentially with the analysis of harmony of damage conception, probability and fuzzy degree of membership in interval [0,1]. Two kinds of fuzzy behaviors of damage development were deduced. Fuzzy stochastic damage models were established based on the fuzzy memberships functional and equivalent normalization theory. Fuzzy stochastic damage finite element method was developed as the approach to reliability simulation. The three-dimensional fuzzy stochastic damage mechanical behaviors of Jianshan mine slope were analyzed and examined based on this approach. The comprehensive results, including the displacement, stress, damage and their stochastic characteristics, indicate consistently that the failure foci of Jianshan mine slope are the slope-cutting areas where, with the maximal failure probability 40%, the hazardous Domino effects will motivate the neighboring rock bodies' sliding activities.

Development of Air Blower for Air Management Module of PEMFC System (고분자전해질 연료전지 연료공급모듈용 Air Blower 개발)

  • Hur, Jin;Jung, In-Soung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.9
    • /
    • pp.1735-1740
    • /
    • 2009
  • This study presents a brushless DC (BLDC) motor for air management system of fuel cell modules. Magnetic equivalent circuit model and finite element analysis are used to design the motor, and an improved structure is considered to reduce a mechanical loss induced from bearing units. Finally, air blower system combined with the motor and an impeller is manufactured and output properties, such as an air pressure and an amount of flowing air, are measured. Through the experimental results, a validity of the simulated one is confirmed.

A Study of the Miniaturization of the PM type Stepping Motor (Claw-pole을 갖는 PM형 스테핑 모터의 소형화에 관한 연구)

  • Rhyu Se-hyun;Jung In-soung;Sung Ha-kyung;Kwon Byung-il
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.929-931
    • /
    • 2004
  • Recently, there are growing demands for permanent magnet(PM) type stepping motor that greater mechanical output, smaller size. Especially, the PM type stepping motor with claw-poles is preferred solution for many small electronics position determination devices since it is small in size, low cost. But, the design of the PM type stepping motor with claw-poles is very difficult because it has a magnetic 3-D shape. This paper deals with a study of the miniaturization of the PM type stepping motor with claw-poles. We investigate the characteristic of the actual model using the equivalent magnetic circuit method and 3-D FE analysis.

  • PDF

Comparison of Korteweg-Helmholtz Electromagnetic Force Density and Magnetic Charge Force Density in Magnetic Systems (자기시스템의 Korteweg-Helmholtz 전자력 밀도와 자하 전자력 밀도의 비교)

  • Lee, Se-Hui;Choe, Myeong-Jun;Park, Il-Han
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.4
    • /
    • pp.226-232
    • /
    • 2000
  • In magnetic systems, distribution of electromagnetic force density causes mechanical deformation, which results in noise and vibration. In this paper, Korteweg-Helmholtzs energy method and equivalent magnetic charge method are employed for comparison of their resulting distributions of force density. The force density from the Korteweg-Helmholtzs method is expresses with two Maxwell stresses on the inside and the outside fo magnetic material respectively. The other is calculated using the magnetic Coulombs law. In the numerical model of an electromagnet, their numerical results are compared. The distributions by the two methods are almost the same. And their total forces are also shown to be the same to the one calculated from the conventional Maxwell stress tensor. But the magnetic charge method is easier and more efficient in numerical calculation.

  • PDF

Integrated Stability Analysis for Power Systems Using Energy Function (에너지함수에 의한 통합안정도해석)

  • Moon, Young-Hyun;Lee, Eung-Hyuk;Lee, Yoon-Seop;Oh, Yong-Taeg;Kim, Baik
    • Proceedings of the KIEE Conference
    • /
    • 1996.11a
    • /
    • pp.77-79
    • /
    • 1996
  • This paper presents an integrated stability analysis by the direct energy function method based on Equivalent Mechanical Model(EMM) which reflects the system behavior related to both angle and voltage stabilities. Actually, angle and voltage stability are intimately related in power system, so complete decoupling of these stability analysis is not possible in general, particularly in stressed power systems. In this paper, it is shown that a identical energy function can be used for angle and voltage stability analysis. The proposed energy function reflects the line resistances and reactive powers under the constraints of the same R/X ratio. The energy margin between UEP and SEP presents a good collapse proximity index in both types of stability analysis.

  • PDF

Nonlinear Dynamic Simulation using SIMULINK (SIMULINK를 이용한 비선형 동적 해석)

  • Kim Seong Keol
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.4
    • /
    • pp.105-112
    • /
    • 2005
  • Analyses of dynamic models which were one and two degrees of freedom, and had the nonlinear springs and dampings with certain polynomial functions were performed from SIMULINK in MATLAB. Those consisted of 12 programs and were built on the basis of the preceding programs fur the linear dynamic simulations. However the programs for the nonlinear simulations were quite different from those f3r the linear ones, and showed the results of the analyses in real time with animating. It was found that the programs would help us to solve any kind of nonlinear dynamic simulation with one and two degrees of freedom. Especially, the simulations for 1 DOF system with cubic nonlinear spring farce showed the results for Duffing's equation, of which phenomena were jump-up and jump-down. It will be applied to the dynamic simulation of the car seat vibration with a passenger, of which model has the equivalent nonlinear springs and is two degrees of freedom.

Dielectric Changes During the Curing of Epoxy Resin Based on the Diglcidyl Ether of Bisphenol A (DGEBA) with Diamine

  • 김홍경;차국헌
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.11
    • /
    • pp.1329-1334
    • /
    • 1999
  • The curing characteristics of diglycidyl ether of bisphenol A (DGEBA) with diaminodiphenylmethane (DDM) as a curing agent were studied using differential scanning calorimetry (DSC), rheometrics mechanical spectrometry (RMS), and dielectric analysis (DEA). The isothermal curing kinetics measured by DSC were well represented with the generalized auto-catalytic reaction model. With the temperature sweep, the inverse relationship between complex viscosity measured by RMS and ionic conductivity obtained from DEA was established indicating that the mobility of free ions represented by the ionic conductivity in DEA measurement and the chain segment motion as revealed by the complex viscosity measured from RMS are equivalent. From isothermal curing measurements at several different temperatures, the ionic conductivity contribution was shown to be dominant in the dielectric loss factor at the early stage of cure. The contribution of the dipole relaxation in dielectric loss factor became larger as the curing further proceeded. The critical degrees of cure, at which the dipolar contribution in the dielectric loss factor starts to appear, increases as isothermal curing temperature is increased. The dielectric relaxation time at the same degree of cure was shorter for a sample cured at higher curing temperature.