• 제목/요약/키워드: Equivalent Mechanical Model

검색결과 496건 처리시간 0.031초

차기 적외선 섬광제 저장수명 예측 (Storage Life Estimation of Next Infrared Flare Material)

  • 백승준;손영갑;김남진;권태수
    • 한국군사과학기술학회지
    • /
    • 제19권3호
    • /
    • pp.311-318
    • /
    • 2016
  • This paper shows storage life estimation of next IR(infrared) flare material through accelerated degradation tests. Three temperature conditions for the accelerated degradation tests are 55, 65 and $75^{\circ}C$. Six performances of IR flare material are burning time, IR peak/continuous Intensity, total energy of near/mid-IR and color ratio, and they were measured after the tests. Storage life of the IR flare material was estimated through both analyzing the degradation data of those performances and applying distribution-based degradation models to the data. Over 30 years of storage life at $20^{\circ}C$ is estimated in terms of IR peak intensity with reliability 0.99 and confidence level 99 %. Additionally, 10 years of storage period at $21^{\circ}C$ would be equivalent to 68 days of accelerated test at $65^{\circ}C$ from the activation energy in Arrhenius model.

웻지를 이용한 3축 방향 디스크 스프링 댐퍼에 관한 연구 (Three Axis Disk Spring Damper Containing Wedge System)

  • 최명진;정지원
    • 한국가스학회지
    • /
    • 제13권6호
    • /
    • pp.1-8
    • /
    • 2009
  • 본 연구는 웻지 시스템을 이용하여 3축 방향의 진동 및 충격을 완화시킬 수 있는 감쇠기에 관한 것이다. 기존의 수직방향 진동/충격에 대해서만 흡진하는 디스크 스프링 완충기를 개선하여 웻지를 추가함으로써 종 방향은 물론 횡 방향을 모두 포함한 3축에 대해 흡진이 가능한 댐퍼를 제안하였다. 수학적 모델을 수립하여, 댐퍼내의 중요한 요소로 작동하는 디스크 스프링과 웻지의 특성을 고찰하였으며, 실험을 통해 댐퍼의 거동을 고찰하였다. 수치 해석 결과와 실험 결과가 잘 일치함을 알 수 있었고, 소산된 에너지양을 구한 후, 수직 수평방향에 대한 등가 점성 감쇠를 구하였다.

  • PDF

타원형 압전 에너지 하베스터의 기계적 모델링 연구 (Study of Mechanical Modeling of Oval-shaped Piezoelectric Energy Harvester)

  • 최재훈;정인기;강종윤
    • 센서학회지
    • /
    • 제28권1호
    • /
    • pp.36-40
    • /
    • 2019
  • Energy harvesting is an advantageous technology for wireless sensor networks (WSNs) that dispenses with the need for periodic replacement of batteries. WSNs are composed of numerous sensors for the collection of data and communication; hence, they are important in the Internet of Things (IoT). However, due to low power generation and energy conversion efficiency, harvesting technologies have so far been utilized in limited applications. In this study, a piezoelectric energy harvester was modeled in a vibration environment. This harvester has an oval-shaped configuration as compared to the conventional cantilever-type piezoelectric energy harvester. An analytical model based on an equivalent circuit was developed to appraise the advantages of the oval-shaped piezoelectric energy harvester in which several structural parameters were optimized for higher output performance in given vibration environments. As a result, an oval-shaped energy harvester with an average output power of 2.58 mW at 0.5 g and 60 Hz vibration conditions was developed. These technical approaches provided an opportunity to appreciate the significance of autonomous sensor networks.

Three-coil Magnetically Coupled Resonant Wireless Power Transfer System with Adjustable-position Intermediate Coil for Stable Transmission Characteristics

  • Chen, Xuling;Chen, Lu;Ye, Weiwei;Zhang, Weipeng
    • Journal of Power Electronics
    • /
    • 제19권1호
    • /
    • pp.211-219
    • /
    • 2019
  • In magnetically coupled resonant (MCR) wireless power transfer (WPT) systems, the introduction of additional intermediate coils is an effective means of improving transmission characteristics, including output power and transmission efficiency, when the transmission distance is increased. However, the position of intermediate coils in practice influences system performance significantly. In this research, a three-coil MCR WPT system is adopted as an exemplification for determining how the spatial position of coils affects transmission characteristics. With use of the fundamental harmonic analysis method, an equivalent circuit model of the system is built to reveal the relationship between the output power, the transmission efficiency, and the spatial scales, including the axial, lateral, and angular misalignments of the intermediate and receiving coils. Three cases of transmission characteristics versus different spatial scales are evaluated. Results indicate that the system can achieve relatively stable transmission characteristics with deliberate adjustments in the position of the intermediate and receiving coils. A prototype of the three-coil MCR WPT system is built and analyzed, and the experimental results are consistent with those of the theoretical analysis.

On bending analysis of perforated microbeams including the microstructure effects

  • Abdelrahman, Alaa A.;Abd-El-Mottaleb, Hanaa E.;Eltaher, Mohamed A.
    • Structural Engineering and Mechanics
    • /
    • 제76권6호
    • /
    • pp.765-779
    • /
    • 2020
  • This article presents a nonclassical size dependent model based on the modified couple stress theory to study and analyze the bending behavior of perforated microbeams under different loading patterns. Modified equivalent material and geometrical parameters for perforated beam are presented. The modified couple stress theory with one material length scale parameter is adopted to incorporate the microstructure effect into the governing equations of perforated beam structure. The governing equilibrium equations of the perforated Timoshenko as well as the perforated Euler Bernoulli are developed based on the potential energy minimization principle. The Poisson's effect is included in the governing equilibrium equations. Regular square perforation configuration is considered. Based on Fourier series expansion, closed forms for the bending deflection and the rotational displacements are obtained for simply supported perforated microbeams. The proposed methodology is validated and compared with the available results in the literature and an excellent agreement is detected. Numerical results demonstrated the applicability of the proposed methodology to investigate the bending behavior of regularly squared perforated beams incorporating microstructure effect under different excitation patterns. The obtained results are significantly important for the design and production of perforated microbeam structures.

연속체 절리와 록볼트 요소를 고려한 암반의 점소성 거동에 관한 수치해석 (Numerical Analysis of the Visco-plastic Behavior of Rock Mass Considering Continuum Joints and Rock Bolt Elements)

  • 노승환;이정인;이연규
    • 터널과지하공간
    • /
    • 제14권3호
    • /
    • pp.215-228
    • /
    • 2004
  • 지하암반의 변형은 단층, 절리 등의 불연속면을 따라 발생하므로 불연속면의 역학적 특성과 공간적인 분포형태는 구조물의 안정성에 근 영향을 미친다. 한편 연약암반에 높은 응력이 작용하는 경우에는 불연속면뿐만 아니라 무결암에서의 변형이 구조물의 안정성에 영향을 줄 수 있다. 이 연구에서는 암반구조물의 안정성 해석을 위하여 무결암과 절리, 그리고 록볼트를 점소성(visco-plastic) 재료로 가정하고, 연속체 개념을 적용하여 유변학적 모델(Rheological model)에 기초한 2차원 점소성 유한요소 프로그램을 개발하였다. 무결암 모델, 절리암반 모델, 록볼트로 보강된 절리암반 모델의 분석을 통하여 개발된 프로그램을 검증하였고, 각각의 모델에서 무결암의 해석 조건(탄성/점소성)에 따른 변위의 차이를 알아보았다. 연약암반에 높은 응력이 작용할 때, 무결암을 탄성으로 해석한 경우보다 점소성으로 해석한 경우에서 지하구조물의 변위가 더 크게 나타났다. 따라서 연약암반 내 지하구조물의 안정성 해석을 위해서는 절리와 록볼트 뿐만 아니라 무결암에 대해서도 점소성 모델을 적용하는 것이 바람직한 것으로 판단되었다.

구동 커패시터의 용량에 따른 단상유도전동기 출력특성에 관한 연구 (Output Characteristics of Capacitor-run type Single Phase Induction Motor considering Capacitance)

  • 김철진;이달은;진용선;최철용;백수현
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 하계학술대회 논문집 B
    • /
    • pp.848-850
    • /
    • 2002
  • Single phase induction motor is directly used usual source, it can be a source of an appliance such as mechanical fan, refrigerator, washing machine, etc. Especially capacitor-run single phase induction motor is suitable to make more inexpensive and high efficient products because it is more high efficiency, and good to start than other single phase induction motors. Generally, voltage and current of capacitor-run single phase induction motor transfer to the part of positive phase and negative phase based on two motor theory. In this paper, we simulate the torque characteristics to capacitance variation from single phase induction motor's equivalent circuit. Through the test using the real motor, we compare and investigate the maximum torque of run state related with capacitance and the adequacy of the converted model.

  • PDF

변압기 탭이 반영된 에너지 함수를 이용한 전압안정도 해석 (Voltage Stability Analysis Based on Energy Function Considering Tap of Transformer)

  • 이기제;최병곤;권용준;문영현;오용택;이병하
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제54권7호
    • /
    • pp.337-344
    • /
    • 2005
  • An energy function is derived on the basis of the EMM(Equivalent Mechanical Model) to take account of the effects of tap changer, and then the VC(Voltage Collapse) criteria is proposed to predict the voltage collapse in Power systems. The VC criterion can be evaluated by using the energy margin given by the energy gap between UEP(Unstable Equilibrium Point) and SEP(Stable Equilibrium Point) of the energy function adopted, in which it is noted that the energy contour should be considered due to energy discontinuity associated with tap changing. This paper shows that the proposed VC criterion improves the accuracy of voltage stability analysis with application to a two-bus sample system.

Flow Characteristics of Polluted Air in a Rectangular Tunnel using PIV and CFD

  • Lee, Yong-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제36권5호
    • /
    • pp.609-617
    • /
    • 2012
  • The flow characteristics of polluted air are analysed by comparing the results obtained from PIV(Particle Image Velocimetry) experiment and CFD(Computational Fluid Dynamics) commercial code. In order to simulate the polluted air flow, the olive oil has been used as tracer particles with the kinematic viscosity of air, $1.51{\times}10^{-5}m^2/s$. The investigation has done in the range of Reynolds numbers of 870, 1730 and 2890 due to the inlet flow velocities of 0.3, 0.6, and 1.0 m/s, respectively. The average velocity and the pressure distributions are comparatively discussed with respect to the three different Reynolds numbers. The results show that the outlet flow rates at three different Reynolds numbers are equivalent of 165 to 167 percent of the inlet ones. The pressure drop occurs in the model closed at both end sides and the highest pressures at each Reynolds number are positioned at the top of the tunnel between the inlet and outlet.

센서 전극 사이의 간극을 고려한 최적의 정전용량 센서 (Optimal Cylindrical Capacitive Sensor(CCS) taking into account the Circumferential Gaps between Sensor Electrodes)

  • 안형준;박종민;한동철
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.613-618
    • /
    • 2004
  • CCS was developed and applied to rotating machines because of accurately measuring the spindle error motion without significant efforts. However, researches on the CCS have been focused on ideal cases where circumferential gaps were ignored. This paper presents the effects of circumferential gaps and proposes an optimal CCS considering the circumferential gaps. First, electrostatic analysis of the CCS that includes the circumferential gaps is performed using the FEM, and an additional capacitance due to the circumferential gap can be approximated as an equivalent extended sensor length. Second, a mathematical model of the CCS considering the circumferential gaps is derived, and the optimal CCS is determined through minimization of the weighted error amplification factor. Finally, two CCSs, both considering and ignoring the circumferential gaps, are built, and the effectiveness of the optimal design is verified through simulation and experiment.

  • PDF