• Title/Summary/Keyword: Equivalent Mass

Search Result 556, Processing Time 0.032 seconds

FE Modeling for the Transient Response Analysis of a Flexible Rotor-bearing System with Mount System to Base Shock Excitation (마운트 시스템을 갖는 유연 로터-베어링 시스템의 기초전달 충격 과도응답 해석을 위한 유한요소 모델링)

  • Lee, An-Sung;Kim, Byung-Ok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.12
    • /
    • pp.1208-1216
    • /
    • 2007
  • Turbomachinery such as turbines, pumps and compressors, which are installed in transportation systems, including aircrafts, ships, and space vehicles, etc., often perform crucial missions and are exposed to potential dangerous impact environments such as base-transferred shock forces. To protect turbomachinery from excessive shock forces, it may be needed to accurately analyze transient responses of their rotors, considering the dynamics of mount designs to be applied. In this study a generalized FE transient response analysis model, introducing relative displacements, is proposed to accurately predict transient responses of a flexible rotor-bearing system with mount systems to base-transferred shock forces. In the transient analyses the state-space Newmark method of a direct time integration scheme is utilized, which is based on the average velocity concept. Results show that for the identical mount systems considered, the proposed FE-based detailed flexible rotor model yields more reduced transient vibration responses to the same shocks than a conventional simple model, obtained by treating a rotor as concentrated lumped mass, equivalent spring and a damper or Jeffcott rotor model. Hence, in order to design a rotor-bearing system with a more compact light-weighted mount system, preparing against any potential excessive shock, the proposed FE transient response analysis model herein is recommended.

Performance Evaluation of Decentralized Control Algorithm of a Full-scale 5-story Structure Installed with Semi-active MR Damper Excited by Seismic Load (준능동 MR감쇠기가 설치된 실물크기 구조물의 분산제어 알고리즘 성능평가)

  • Youn, Kyung-Jo;Park, Eun-Churn;Lee, Heon-Jae;Moon, Seok-Jun;Min, Kyung-Won;Jung, Hyung-Jo;Lee, Sang-Hyun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.2
    • /
    • pp.255-262
    • /
    • 2008
  • In this study, seismic response control performance of decentralized response-dependent MR damper which generates the control force using only the response of damper-installed floor, was experimentally investigated through the tests of a full-scale structure installed with large MR dampers. The performance of the decentralized control algorithm was compared to those of the centralized ones such as Lyapunov, modulated homogeneous friction, and clipped-optimal control. Hybrid mass damper were controlled to induce seismic response of the full-scale structure under El Centro earthquake. Experimental results indicated that the proposed decentralized MR damper provided superior or equivalent performance to centralized one in spite of using damper-installed floor response for calculating input voltage to MR damper.

Optimal Design for Cushioning Package of a Heavy Electronic Product using Mechanical Drop Analysis (낙하충격해석을 통한 대형 전자제품의 완충포장재 최적설계)

  • 금대현;김원진;김성대;박상후
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.677-683
    • /
    • 2003
  • Generally, heavy electronic products undergo many different types of shocks in transporting from a manufacturer to customers. Cushioning package materials are used to protect electronic products from severe shock environments. Since the mass distributions of heavy electronic products are usually unbalanced and complex, it is very difficult to design a cushioning package with haying high performance by considering only the equivalent stiffness of that. Therefore, when designing the cushioning material for a heavy electronic product, it is necessary to optimize its shape in order to maximize the cushioning performance. In this study, it is focused on designing an optimal shape of cushioning material for a large-sized refrigerator and an efficient design method is suggested by using a dynamic finite element analysis. As the results of this study, the optimal shape of cushioning material, which has high cushioning performance and minimized volume, was obtained from the drop analysis and a optimization process. From free drop tests of a refrigerator, it was identified that the cushioning performance of the optimal package were improved up to 16 % and the volume of it was reduced in a range of 22 %.

  • PDF

Three-dimensional Rotordynamic Analysis Considering Bearing Support Effects (베어링 지지 효과를 고려한 3차원 로터동역학 해석)

  • Park, Hyo-Keun;Kim, Dong-Man;Kim, Yu-Sung;Kim, Myung-Kuk;Chen, Seung-Bae;Kim, Dong-Hyun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.2 s.119
    • /
    • pp.105-113
    • /
    • 2007
  • In this study, three-dimensional rotordynamic analyses have been conducted using equivalent beam, hybrid and full three-dimensional models. The present computational method is based on the general finite element method with rotating gyroscopic effects of the rotor system. General purpose commercial finite element code, SAMCEF which includes practical rotordynamics module with various types of rotor analysis tools and bearing elements is applied. For the purpose of numerical verification, comparison study for a benchmark rotor model with support bearings is performed first. Detailed finite element models based on three different modeling concepts are constructed and then computational analyses are conducted for the realistic and complex three-dimensional rotor system. The results for rotor stability and mass unbalance response are presented and compared with the experimental vibration test data conducted herein.

Prediction of the Damage in the Structure with Damping Using the Modified Dynamic Characteristics (동특성 변화를 이용한 감쇠 구조물의 손상예측)

  • Lee, Jung Youn
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.11
    • /
    • pp.1144-1151
    • /
    • 2012
  • A damage in structure alters its dynamic characteristics. The change is characterized by changes in the modal parameter, i.e., modal frequencies, modal damping value and mode shape associated with each modal frequency. Changes also occur in some of the structural parameters; namely, the mass, damping, stiffness matrices of the structure. In this paper, evaluation of changes in stiffness matrix of a structure is presented as a method not only for identifying the presence of the damage but also locating the damage. It is shown that changed stiffness matrix can be accurately estimated a sensitivity coefficient matrix derived from modifying mode shapes, First, with 4 story shear structure models, the effect of presence of damage in a structure on its stiffness matrix is studied. By using these analytical model, the effectiveness of using change of stiffness matrix in detecting and locating damages is demonstrated. To validate the predicted changing stiffness and its location, the obtained results are compared to the reanalysis result which shows good agreement.

Surface Reaction of Uranium Dioxide with CF$_4$/O$_2$ Mixture Gas Plasma (CF$_4$/O$_2$ 혼합기체 플라즈마를 이용한 이산화 우라늄의 표면식각반응)

  • 민진영;김용수
    • Journal of Surface Science and Engineering
    • /
    • v.32 no.2
    • /
    • pp.165-171
    • /
    • 1999
  • The etching reaction of $UO_2$ in $CF_4/O_2$ gas plasma is examined as functions of $CF_4/O_2$ ratio, plasma power, and substrate temperature at up to $370^{\circ}C$ under the total pressure of 0.30 Torr. It is found that the highest etching rate is obtained at 20% $O_2$ mole fraction, regardless of r. f. power and substrate temperature. The existence of the optimum $CF_4/O_2$ ratio is confirmed by SEM, XPS and XRD analysis. The highest etching reaction rate at $370^{\circ}C$ under 150W exceeds 1000 monolayers/min., which is equivalent to 0.4$\mu\textrm{m}$/min. The mass spectrometry analysis results reveal that the major reaction product is uranium hexa-fluoride $UF_6$. Based on the experimental findings, dominant overall reaction of uranium dioxide in $CF_4/O_2$ plasma is determined : $8UO_2+12CF_4+3O_2=8UF_6+12CO_{2-x}$ where $CO_{2-x}$ represents the undetermined mix of $CO_2$ and CO.

  • PDF

Development of FK506-hyperproducing strain and optimization of culture conditions in solid-state fermentation for the hyper-production of FK506

  • Mo, SangJoon;Yang, Hyeong Seok
    • Journal of Applied Biological Chemistry
    • /
    • v.59 no.4
    • /
    • pp.289-298
    • /
    • 2016
  • FK506 hyper-yielding mutant, called the TCM8594 strain, was made from Streptomyces tsukubaensis NRRL 18488 by mutagenesis using N-methyl-N'-nitro-N-nitrosoguanidine, ultraviolet irradiation, and FK506 sequential resistance selection. FK506 production by the TCM8594 strain improved 45.1-fold ($505.4{\mu}g/mL$) compared to that of S. tsukubaensis NRRL 18488 ($11.2{\mu}g/mL$). Among the five substrates, wheat bran was selected as the best solid substrate to produce optimum quantities of FK506 ($382.7{\mu}g/g$ substrate) under solid-state fermentation, and the process parameters affecting FK506 production were optimized. Maximum FK506 yield ($897.4{\mu}g/g$ substrate) was achieved by optimizing process parameters, such as wheat bran with 5 % (w/w) dextrin and yeast extract as additional nutrients, 70 % (v/w) initial solid substrate moisture content, initial medium pH of 7.2, $30^{\circ}C$ incubation temperature, inoculum level that was 10 % (v/w) of the cell mass equivalent, and a 10 day incubation. The results showed an overall 234 % increase in FK506 production after optimizing the process parameters.

A Computation Method for Time of Flight in the Anti-Aircraft Gun Fire Control System (대공화기 탄자비행시간 계산 기법)

  • Kim, Jaehun;Kim, Euiwhan;Yu, Sukjin;Kim, Sungho
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.4 no.11
    • /
    • pp.361-368
    • /
    • 2015
  • In AAGFCS the effective range is regarded as a range for the bullet's speed exceeding the speed of sound to damage the stationary target. Hence the real engagement range might be extended over the effective range for the approaching target since bullet's relative speed to the target increases depending on the approaching speed. However previous TOF equations have good computation accuracy within the effective range only, and they can not be used above that range due to their bad accuracy. We propose an accurate TOF computation method which can be used both within and above the effective range in real time. Some simulation results are shown to demonstrate usefulness of our algorithm for the 30mm projectile.

Numerical Analysis of Convective Heat and Mass Transfer around Human Body under Strong Wind

  • Li, Cong;Ito, Kazuhide
    • International Journal of High-Rise Buildings
    • /
    • v.1 no.2
    • /
    • pp.107-116
    • /
    • 2012
  • The overarching objective of this study is to predict the convective heat transfer around a human body under forced strong airflow conditions assuming a strong wind blowing through high-rise buildings or an air shower system in an enclosed space. In this study, computational fluid dynamics (CFD) analyses of the flow field and temperature distributions around a human body were carried out to estimate the convective heat transfer coefficient for a whole human body assuming adult male geometry under forced convective airflow conditions between 15 m/s and 25 m/s. A total of 45 CFD analyses were analyzed with boundary conditions that included differences in the air velocity, wind direction and turbulence intensity. In the case of approach air velocity $U_{in}=25m/s$ and turbulent intensity TI = 10%, average convective heat transfer coefficient was estimated at approximately $100W/m^2/K$ for the whole body, and strong dependence on air velocity and turbulence intensity was confirmed. Finally, the formula for the mean convective heat transfer coefficient as a function of approaching average velocity and turbulence intensity was approximated by using the concept of equivalent steady wind speed ($U_{eq}$).

Free Vibration Analysis of a 3-dimensional Cable-Stayed Bridge with the Unsymmetric Girder Cross-section (비대칭단면 주형을 갖는 3차원 사장교의 고유진동해석)

  • Kim, Chul Young;Chang, Sung Pil
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.11 no.2
    • /
    • pp.15-26
    • /
    • 1991
  • The lateral forces such as the earthquake and wind my cause the torsion to be coupled with the lateral bending in the gider, the cross-section of wich has only one axis of symmetry. This induces additional stresses especially in cables arranged in double-planes. Since this effect cannot be considered by using the conventional frame elements, the stiffness and the mass matrices of the geometrically nonlinear thin-walled frame element are developed in this study to model the girder. The equivalent modulus of elasticity proposed by Ernst is used for the cable elements. Verification of the present theory is made through a numerical example. Then, the free vibration of a three dimensional cable-stayed bridge is analyzed to study the coupled flexural-torsional behavior.

  • PDF