• Title/Summary/Keyword: Equivalent Magnet

Search Result 196, Processing Time 0.034 seconds

Investigation on stability characteristics of 2G HTS coated conductor tapes with various stabilizer thickness

  • Quach, Huu Luong;Kim, Ji Hyung;Hyeon, Chang Ju;Chae, Yoon Seok;Moon, Jae Hyung;Kim, Ho Min
    • Progress in Superconductivity and Cryogenics
    • /
    • v.20 no.1
    • /
    • pp.19-22
    • /
    • 2018
  • The thermal and electrical properties of the conductor are critical parametersfor the design and optimization of the superconducting magnet. This paper presents simulation code to analyze electrical and thermal stability characteristics of the second generation (2G) high-temperature superconductor (HTS) by varying copper stabilizer thickness. Two types of commercial 2G HTS coated conductor tapes, YBCO and GdBCO were used in this study. These samples were cooled by Liquid Nitrogen ($LN_2$) having boiling at 77.3 K and an equivalent electrical circuit model for them is choosen and analysed in details. Also, an over-current pulse test in which a current exceeding a critical current was performed. From the simulation results, the influences of the copper stabilizer thickness on the stability characteristics of these samples are presented.

Development of Traction Unit for 2-motor Driven Electric Vehicle

  • Park, Jung-Woo;Koo, Dae-Hyun;Kim, Jong-Moo;Kim, Heung-Geun
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.950-954
    • /
    • 1998
  • This paper describes a development of traction unit for 2-motor driven electric vehicle (EV). The traction unit is consisted with an interior permanent magnet synchronous motor (IPMSM), a reduction gear and an inverter for electric vehicle that is driven by 2 motors without differential gear. For traction unit, prototype IPMSM and inverter have been developed. The IPMSM was designed by CAD program that was developed with both equivalent circuit method and FEM. Also the inverter was developed to drive 2 motors with 6 legs IGBT switches in a control board. The vector control algorithm was implemented with maximum torque control method in the constant torque region and field weakening control method in the constant power region considering inverter capacity. To verify that the traction unit is more high efficiency and has more high power density than a traction unit with induction motor with the same power, we would like to show the results about the design and analysis of the IPMSM and the experiment results about the traction unit.

  • PDF

A Study on the Winding Method for Reducing Joints of the High Temperature Superconducting Double Pancake Coil (고온 초전도 더블 팬케이크의 접합 수 감소를 위한 권선 방법에 관한 연구)

  • Kang, J.S.;Jo, H.C.;Jang, J.Y.;Hwang, Y.J.;Lee, J.;Lee, W.S.;Park, Y.G.;Ko, T.K.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.14 no.1
    • /
    • pp.30-33
    • /
    • 2012
  • A double pancake winding method is widely used to make the superconducting magnet, using high temperature superconductor (HTS) tape. In the double pancake winding method, the joints with contact resistances between double pancake coils are inevitably needed. The electrical joule heating on the contacts causes refrigerant loss during operation. And a space outside the winding, for splices and mechanical support, is more than that for its layer-wound equivalent. In this paper, a double pancake winding method in order to reduce the number of the joints was proposed. Both of the double pancake coils using the conventional winding method and the proposed winding method have been fabricated and tested to make the solution technically feasible in the double pancake winding method. Especially, critical-current tests of the fabricated double pancake coils were conducted in order to show the same performance and confirm contact resistances between double pancake coils.

Experimental Results of Adaptive Load Torque Observer and Robust Precision Position Control of PMSM (PMSM의 정밀 Robust 위치 제어 및 적응형 외란 관측기 적용 연구)

  • Go, Jong-Seon;Yun, Seong-Gu
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.49 no.3
    • /
    • pp.117-123
    • /
    • 2000
  • A new control method for precision robust position control of a PMSM (Permanent Magnet Synchronous Motor) using asymptotically stable adaptive load torque observer is presented in the paper. Precision position control is obtained for the PMSM system approximately linearized using the field-orientation method. Recently, many of these drive systems use the PMSM to avoid backlashes. However, the disadvantages of the motor are high cost and complex control because of nonlinear characteristics. Also, the load torque disturbance directly affects the motor shaft. The application of the load torque observer is published in [1] using fixed gain. However, the motor flux linkage is not exactly known for a load torque observer. There is the problem of uncertainty to obtain very high precision position control. Therefore, a model reference adaptive observer is considered to overcome the problem of unknown parameter and torque disturbance in this paper. The system stability analysis is carried out using Lyapunov stability theorem. As a result, asymptotically stable observer gain can be obtained without affecting the overall system response. The load disturbance detected by the asymptotically stable adaptive observer is compensated by feedforwarding the equivalent current which gives fast response. The experimental results are presented in the paper using DSP TMS320c31.

  • PDF

Prediction of Iron Loss Resistance by Using HILS System (HILS 시스템을 통한 IPMSM의 철손저항 추정)

  • Jeong, Kiyun;Kang, Raecheong;Lee, Hyeongcheol
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.1
    • /
    • pp.25-33
    • /
    • 2015
  • This paper presents the d-q axis equivalent circuit model of an interior permanent magnet (IPM) which includes the iron loss resistance. The model is implemented to be able to run in real-time on the FPGA-based HIL simulator. Power electronic devices are removed from the motor control unit (MCU) and a separated controller is interfaced with the real-time simulated motor drive through a set of proper inputs and outputs. The inputs signals of the HIL simulation are the gate driver signals generated from the controller, and the outputs are the winding currents and resolver signals. This paper especially presents iron loss prediction which is introduced by means of comparing the torque calculated from d-q axis currents and the desired torque; and minimizing the torque difference. This prediction method has stable prediction algorithm to reduce torque difference at specific speed and load. Simulation results demonstrate the feasibility and effectiveness of the proposed methods.

Vector Control Implementation of PMSM Using dSPACE 1104 System (dSPACE 1104 시스템을 이용한 영구자석 동기전동기 벡터제어 구현)

  • Lee, Yong-Seok;Lee, Dong-Min;Ji, Jun-Keun;Cha, Gui-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1084-1085
    • /
    • 2007
  • This paper presents a vector control implementation for SPMSM(Surface-mounted Permanent Magnet Synchronous Motor) using dSPACE 1104 system and MATLAB/SIMULINK. SPMSM can be treated as a DC motor provided that currents of flux and torque component are controlled independently using vector control. Therefore various control algorithms for conventional DC motor control can be adopted to SPMSM. The system is designed to improve set-point tracking capability, fast response, and accuracy. In This paper, d-q equivalent modeling of PMSM is derived based on vector control theory. The PI controller is used for speed control and state feedback PI current control method is used for current control. For the implementation of high performance vector control system, dSPACE 1104 system is used. Simulations and experiments were carried out to examine validity of the proposed vector control implementation.

  • PDF

Analysis and Control of NPC-3L Inverter Fed Dual Three-Phase PMSM Drives Considering their Asymmetric Factors

  • Chen, Jian;Wang, Zheng;Wang, Yibo;Cheng, Ming
    • Journal of Power Electronics
    • /
    • v.17 no.6
    • /
    • pp.1500-1511
    • /
    • 2017
  • The purpose of this paper is to study a high-performance control scheme for neutral-point-clamping three-level (NPC-3L) inverter fed dual three-phase permanent magnet synchronous motor (PMSM) drives by considering some asymmetric factors such as the non-identical parameters in phase windings. To implement this, the system model is analyzed for dual three-phase PMSM drives with asymmetric factors based on the vector space decomposition (VSD) principle. Based on the equivalent circuits, PI controllers with feedforward compensation are used in the d-q subspace for regulating torque, where the cut-off frequency of the PI controllers are set at the twice the fundamental frequency for compensating both the additional DC component and the second order component caused by asymmetry. Meanwhile, proportional resonant (PR) controllers are proposed in the x-y subspace for suppressing the possible unbalanced currents in the phase windings. A dual three-phase space vector modulation (DT-SVM) is designed for the drive, and the balancing factor is designed based on the numerical fitting surface for balancing the DC link capacitor voltages. Experimental results are given to demonstrate the validity of the theoretical analysis and the proposed control scheme.

Development of an Optimization Program for a 2G HTS Conductor Design Process

  • Kim, K.L.;Hwang, S.J.;Hahn, S.;Moon, S.H.;Lee, H.G.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.12 no.4
    • /
    • pp.8-12
    • /
    • 2010
  • The properties of the conductor.mechanical, thermal, and electrical-are the key information in the design and optimization of superconducting coils. Particularly, in devices using second generation (2G) high temperature superconductors (HTS), whose base materials (for example, the substrate or stabilizer) and dimensions are adjustable, a design process for conductor optimization is one of the most important factors to enhance the electrical and thermal performance of the superconducting system while reducing the cost of the conductor. Recently, we developed a numerical program that can be used for 2G HTS conductor optimization. Focusing on the five major properties, viz. the electrical resistivity, heat capacity, thermal conductivity, Z-value, and enthalpy, the program includes an electronic database of the major base materials and calculates the equivalent properties of the 2G HTS conductors using the dimensions of the base materials as the input values. In this study, the developed program is introduced and its validity is verified by comparing the experimental and simulated results obtained with several 2G HTS conductors.

The Influence of Attachment Type on the Distribution of Occlusal Force in Implant Supported Overdentures (하악 임플란트 오버덴쳐에서 어태치먼트 종류에 따른 응력분포)

  • Sung, Chai-Ryun;Cho, In-Ho
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.25 no.4
    • /
    • pp.375-390
    • /
    • 2009
  • Statement of problem: Implant supported overdenture is accepted widely as a way to restore edentulous ridge providing better retention and support of dentures. Various types of attachment for overdenture have been developed. Purpose: The purpose of this study was to investigate the influence of attachment type in implant overdentures on the biomechanical stress distribution in the surrounding bone, prosthesis and interface between implant and bone. Material and methods: Finite element analysis method was used. Average CT image of mandibular body(Digital $Korea^{(R)}$, KISTI, Korea) was used to produce a mandibular model. Overdentures were placed instead of mandibular teeth and 2mm of mucosa was inserted between the overdenture and mandible. Two implants($USII^{(R)}$, Osstem, Korea) were placed at both cuspid area and 4 types of overdenture were fabricated ; ball and socket, Locator, magnet and bar type. Load was applied on the from second premolar to second molar tooth area. 6 times of finite element analyses were performed according to the direction of the force $90^{\circ}$, $45^{\circ}$, $0^{\circ}$ and unilateral or bilateral force applied. The stress at interface between implants and bone, and prosthesis and the bone around implants ware compared using von Mises stress. The results were explained with color coded graphs based on the equivalent stress to distinguish the force distribution pattern and the site of maximum stress concentration. Results: Unilateral loading showed that connection area between implant fixture and bar generated maximum stress in bar type overdentures. Bar type produced 100 Mpa which means the most among 4 types of attachments. Bilateral loading, however, showed that bar type was more stable than other implants(magnet, ball and socket). 26 Mpa of bar type was about a half of other types on overdenture under $90^{\circ}$ bilateral loading. Conclusions: In any directions of stress, bar type was proved to be the most vulnerable type in both implants and overdentures. Interface stress did not show any significant difference in stress distribution pattern.

Basic Study on the Production of Nd-Fe-B System Rare Earth Anisotropic bonded Magnet Materials by the R-D & HDDR Process(I) (R-D & HDDR Process에 의한 Nd-Fe-B계 희토류 이방성 본드자석재료의 제조에 관한 기초연구 (I))

  • Jo, Seon-Mi;Son, Chang-Bin;Jo, Tong-Rae
    • Korean Journal of Materials Research
    • /
    • v.11 no.7
    • /
    • pp.609-614
    • /
    • 2001
  • This study was carried out to obtain a basic data on the production of the Nd-Fe-B system rare earth anisotropic bonded magnet by R-D & HDDR process. The reduction reaction of Nd$_2$O$_3$by metallic Ca and the diffusion reaction of Nd into Fe-B alloy powder were investigated for the production the Nd-Fe-B alloy powder. We concluded that a proper quantity of metallic Ca was about 1.3 times of theoretical equivalent from the yields of Nd and B after the R-D reaction at 100$0^{\circ}C$ for 1h. In the XRD analysis the diffusion reaction of Nd into the center of Fe-B alloy powder for the completed homogenization was required through about 45min at 110$0^{\circ}C$ for the R-D reaction, and also the maximum efficiency on the yield of Nd was obtained with such a condition. Residual Ca and oxygen contents of the final powder sample after washing were detected in 0.17wt% and 0.42wt% by ICP and oxygen analyzer, respectively.

  • PDF