• Title/Summary/Keyword: Equivalent Impedance

Search Result 489, Processing Time 0.032 seconds

Study on Measurement Technology for Equivalent Series Impedance of High-voltage Pulsed Power Capacitors (펄스파워용 고전압 커패시터 등가직렬 임피던스 측정에 관한 연구)

  • Lee, Byeong-Yoon;Lee, Byung-Ha
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.7
    • /
    • pp.937-942
    • /
    • 2013
  • Equivalent series impedance of high-voltage pulsed power capacitor is one of the important electrical characteristics both for users and for capacitor manufacturers because it may have serious effects on the performance of pulse forming circuits. In this paper, definition of equivalent series impedance and factors which generate equivalent series impedance are reviewed. Theoretical analysis for the calculation of equivalent series impedance based on differential measurement method is described and calculation program has been developed. In order to acquire data which are necessary to calculate equivalent series impedance from discharging current waveform, charging-dischargig controller has been manufactured. Measurement results of equivalent series impedance for high voltage pulsed power capacitor have been given.

Investigation of Equivalent Circuit for PEMFC Assessment (고분자 전해질 FC 평가용 등가회로 검토)

  • Myong, Kwang-Jae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.9
    • /
    • pp.897-902
    • /
    • 2011
  • Chemical reactions occurring in a PEMFC are dominated by the physical conditions and interface properties, and the reactions are expressed in terms of impedance. The performance of a PEMFC can be simply diagnosed by examining the impedance because impedance characteristics can be expressed by an equivalent electrical circuit. In this study, the characteristics of a PEMFC are assessed using the AC impedance and various equivalent circuits such as a simple equivalent circuit, equivalent circuit with a CPE, equivalent circuit with two RCs, and equivalent circuit with two CPEs. It was found in this study that the characteristics of a PEMFC could be assessed using impedance and an equivalent circuit, and the accuracy was highest for an equivalent circuit with two CPEs.

Estimation of Equivalent Circuit Parameters of Underwater Acoustic Piezoelectric Transducer for Matching Network Design of Sonar Transmitter (소나 송신기의 정합회로 설계를 위한 수중 음향 압전 트랜스듀서의 등가회로 파라미터 추정)

  • Lee, Jeong-Min;Lee, Byung-Hwa;Baek, Kwang-Ryul
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.12 no.3
    • /
    • pp.282-289
    • /
    • 2009
  • This paper presents an estimation technique of the equivalent circuit parameters for an underwater acoustic piezoelectric transducer from the measured impedance. Estimated equivalent circuit can be used for the design of the impedance matching network of the sonar transmitter. A fitness function is proposed to minimize the error between the calculated impedance of the equivalent circuit and the measured impedance of the transducer. The equivalent circuit parameters are estimated by using the fitness function and the PSO(Particle Swarm Optimization) algorithm. The effectiveness of the proposed method is verified by the applications to a sandwich-type transducer and a dummy load. In addition, the impedance matching network is also designed by using the estimated equivalent circuit model.

A Fault Location Algorithm Using Adaptively Estimated Local Source Impedance for a Double-Circuit Transmission Line System (자기단 전원 임피던스 추정 기법을 사용한 병행 2회선 송전선로 고장점 표정 알고리즘)

  • Park, Gun-Ho;Kang, Sang-Hee;Kim, Sok-Il;Shin, Jonathan H.
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.3
    • /
    • pp.373-379
    • /
    • 2012
  • This paper presents a fault location algorithm based on the adaptively estimated value of the local sequence source impedance for faults on a parallel transmission line. This algorithm uses only the local voltage and current signals of a faulted circuit. The remote current signals and the zero-sequence current of the healthy adjacent circuit are calculated by using the current distribution factors together with the local terminal currents of the faulted circuit. The current distribution factors consist of local equivalent source impedance and the others such as fault distance, line impedance and remote equivalent source impedance. It means that the values of the current distribution factors can change according to the operation condition of a power system. Consequently, the accuracy of the fault location algorithm is affected by the two values of equivalent source impedances, one is local source impedance and the other is remote source impedance. Nevertheless, only the local equivalent impedance can be estimated in this paper. A series of test results using EMTP simulation data show the effectiveness of the proposed algorithm. The proposed algorithm is valid for a double-circuit transmission line system where the equivalent source impedance changes continuously.

High-Frequency Equivalent Circuit Model for Differential Mode Noise Analysis of DC-DC Buck Converter (DC-DC 벅 컨버터의 차동모드 노이즈 분석을 위한 고주파 등가회로 모델)

  • Shin, Juhyun;Kim, Woojung;Cha, Hanju
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.6 no.4
    • /
    • pp.473-480
    • /
    • 2020
  • In this paper, we proposed a high frequency equivalent circuit considering parasitic impedance components for differential noise analysis on the input stage during DC-DC buck converter switching operation. Based on the proposed equivalent circuit model, we presented a method to measure parasitic impedance parameters included in DC bus plate, IGBT, and PCB track using the gain phase method of a network analyzer. In order to verify the validity of this model, a DC-DC prototype consisting of a buck converter, a signal analyzer, and a LISN device, and then resonance frequency was measured in the frequency range between 150 kHz and 30 MHz. The validity of the parasitic impedance measurement method and the proposed equivalent model is verified by deriving that the measured resonance frequency and the resonance frequency of the proposed high frequency equivalent model are the same.

Equivalent Grid Impedance Estimation Method Using Negative Sequence Current Injection in Three-Phase Grid-connected Inverter (3상 계통 연계형 인버터의 역상분 전류 주입을 이용한 계통 등가 임피던스 추정 기법)

  • Park, Chan-Sol;Song, Seung-Ho;Im, Ji-Hoon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.6
    • /
    • pp.526-533
    • /
    • 2015
  • A new algorithm is proposed for the estimation of equivalent grid impedance at the point of common coupling of a grid-tie inverter output. The estimated impedance parameter can be used for the improvement of the performance and the stability of the distributed generation system. The estimation error is inevitable in the conventional estimation method because of the axis rotation due to PLL. In the conventional estimation error, the d-q voltage and current are used for the calculation of the impedance with active and reactive current injections. Conversely, in the proposed algorithm, the negative sequence current is injected, and then the negative sequence voltage is measured for the impedance estimation. As the positive and negative sequence current controller is independent and the PLL is based on the positive sequence component only, the estimation of the equivalent impedance can be achieved with high accuracy. Simulation and experimental results are compared to validate the proposed algorithm.

Study on Size-Reduced λ/4 Impedance Transformer using T-Equivalent Circuit (T형 등가회로를 이용하여 크기를 감소시킨 λ/4 임피던스 변환기의 연구)

  • Tae-Soon Yun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.4
    • /
    • pp.595-600
    • /
    • 2023
  • In this paper, a modified equations of the T-equivalent circuit of the transmission line with the arbitrary electrical length is suggested. The suggested equations can be calculated without limitation of the equal branch-line. So, a modified T-equivalent circuit can be made with the arbitrary position of the open-stub. Also, the modified T-equivalent circuit can be applied in the arbitrary electrical length and impedance of the transmission line. For example, the λ/4 impedance transformer is converted with 4 divided T-equivalent circuit. The converted λ/4 impedance transformer has the size reduction ratio of 39.4%.

Equivalent Circuit Modeling of Multiple Modes Underwater Acoustic Piezoelectric Transducer Using Particle Swarm Optimization Algorithm (미립자 집단 최적화 알고리즘을 이용한 다중모드 수중 음향 압전 트랜스듀서의 등가회로 모델링)

  • Lee, Jeong-Min;Lee, Byung-Hwa;Baek, Kwang-Ryul
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.4
    • /
    • pp.363-369
    • /
    • 2009
  • In this paper, an estimation method is presented to determine the equivalent circuit model of an underwater acoustic piezoelectric transducer with multiple resonant modes. A fitness function that includes the coupled resonant effects is proposed to minimize an error between the measured impedance of the transducer and the calculated impedance of the equivalent model. Unknown parameters of the equivalent circuit are estimated by using PSO algorithm. The proposed method is applied to an example transducer of the sandwich type with 3 resonances in the frequency band of interest. The analytical impedance of the estimated equivalent circuit model is compared with the measured impedance of the transducer and the validity of proposed method is verified.

A Boundary Protection for Power Distribution Line Based on Equivalent Boundary Effect

  • Zhang, Xin;Mu, Long-Hua
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.2
    • /
    • pp.262-270
    • /
    • 2013
  • A boundary protection method for power distribution line based on equivalent boundary effect is presented in this paper. In the proposed scheme, the equivalent resonance component with a certain central frequency is sleeve-mounted at the beginning of protected zone. The 'Line Boundary' is built by using boundary effect, which is created by introducing impedance in the primary-side of line. The 'Line Boundary' is significantly different from line wave impedance. Therefore, the boundary protection principle can be applied to power distribution line without line traps. To analyze the frequency characteristic corresponding to traveling-waves of introducing impedance in the primary-side of line, distributed parameters model of equivalent resonance component is established. The results of PSCAD/EMTDC simulation prove the obvious difference of voltage high frequency component between internal faults and external faults due to equivalent resonance component, and validate the scheme.

Equivalent Parallel Capacitance Cancellation of Common Mode Chokes Using Negative Impedance Converter for Common Mode Noise Reduction

  • Dong, Guangdong;Zhang, Fanghua
    • Journal of Power Electronics
    • /
    • v.19 no.5
    • /
    • pp.1326-1335
    • /
    • 2019
  • Common mode (CM) chokes are a crucial part in EMI filters for mitigating the electromagnetic interference (EMI) of switched-mode power supplies (SMPS) and for meeting electromagnetic compatibility standards. However, the parasitic capacitances of a CM choke deteriorate its high frequency filtering performance, which results in increases in the design cycle and cost of EMI filters. Therefore, this paper introduces a negative capacitance generated by a negative impedance converter (NIC) to cancel the influence of equivalent parallel capacitance (EPC). In this paper, based on a CM choke equivalent circuit, the EPCs of CM choke windings are accurately calculated by measuring their impedance. The negative capacitance is designed quantitatively and the EPC cancellation mechanisms are analyzed. The impedance of the CM choke in parallel with negative capacitances is tested and compared with the original CM choke using an impedance analyzer. Moreover, a CL type CM filter is added to a fabricated NIC prototype, and the insertion loss of the prototype is measured to verify the cancellation effect. The prototype is applied to a power converter to test the CM conducted noise. Both small signal and EMI measurement results show that the proposed technique can effectively cancel the EPCs and improve the CM filter's high frequency filtering performance.