• 제목/요약/키워드: Equivalent Dynamic Stiffness

검색결과 181건 처리시간 0.022초

계단형 외팔보의 등가보 변환에 의한 기본고유진동수 해석 (Fundamental Natural Frequency Analysis of Stepped Cantilever Beams by Equivalent Beam Transformation Technique)

  • 문상필;홍순조
    • 한국전산구조공학회논문집
    • /
    • 제21권4호
    • /
    • pp.401-410
    • /
    • 2008
  • 보의 고유진동수는 진동해석 뿐만 아니라 구조물의 동적특성을 파악하는데 중요한 역할을 한다 보의 단면이 불연속적으로 변하는 계단형 보의 고유진동수 해석은 복잡하다. 이런 계단형 보의 진동해석은 Rayleigh-Ritz법, FEM 등과 같은 근사해석법이 흔히 사용되는데 이들 해석의 정확성은 분할요소의 수, 계산의 반복수, 가정처짐곡선의 형상에 따라 좌우된다. 본 연구에서는 계단형 외팔보의 등가보 변환 방법을 이용한 기본고유진동수의 근사해석방법을 제시하고자 하였으며 여러 예제에 대하여 제안방법과 유한요소해석 결과를 비교하여 그 적용성과 신뢰성을 검증하였다.

대칭단헝 단순보의 등가보 변환에 의한 고유치 해석 (Eigenvalue Analysis of Symmetrically Stepped Beams by Equivalent Beam Transformation)

  • 정재철;문상필
    • 한국전산구조공학회논문집
    • /
    • 제19권1호
    • /
    • pp.55-62
    • /
    • 2006
  • 보의 고유진동수는 보의 동적해석에서 중요한 역할을 한다. 보의 단면이 불규칙적으로 변하는 단형보의 고유진동수 산정은 해석상 복잡하고 어렵다. 이런 단형보의 해석은 주로 다자유도계 해석인 질량집중방법이 널리 사용되지만 이들 해석방법은 요소의 분할수나 계산의 반복수 또는 가정처짐곡선의 정확성 여부에 해석의 정밀성이 좌우된다. 본 연구는 대칭단형 단순보의 등가보 변환 방법과 그에 따른 고유치해석 방법을 제시하였으며 타 문헌의 예제와 여러 모델을 대상으로 그 타당성 및 실용성을 입증하였다.

Mechanics feasibility of using CFRP cables in super long-span cable-stayed bridges

  • Zhang, Xin-Jun
    • Structural Engineering and Mechanics
    • /
    • 제29권5호
    • /
    • pp.567-579
    • /
    • 2008
  • To gain understanding of the applicability of CFRP cables in super long-span cable-stayed bridges, by taking a 1400 m cable-stayed bridge as example, mechanics performance including the static behavior under service load, dynamic behavior, wind stability and seismic behavior of the bridge using either steel or CFRP cables are investigated numerically and compared. The results show that viewed from the aspect of mechanics performance, the use of CFRP cables in super long-span cable-stayed bridges is feasible, and the cross-sectional areas of CFRP cables should be determined by the principle of equivalent axial stiffness.

Ratio of predicted and observed natural frequency of finite sand stratum

  • Prathap Kumar, M.T.;Ramesh, H.N.;Raghavendra Rao, M.V.;Raghunandan, M.E.
    • Geomechanics and Engineering
    • /
    • 제1권3호
    • /
    • pp.219-239
    • /
    • 2009
  • Vertical vibration tests were conducted using model footings of different size and mass resting on the surface of finite sand layer with different height to width ratios and underlain by either rigid concrete base or natural red-earth base. A comparative study of the ratio of predicted and observed natural frequency ratio of the finite sand stratum was made using the calculated values of equivalent stiffness suggested by Gazetas (1983) and Baidya and Muralikrishna (2001). Comparison of results between model footings resting on finite sand stratum underlain by the rigid concrete base and the natural red-earth base showed that, the presence of a finite base of higher rigidity increases the resonant frequency significantly. With increase in H/B ratio beyond 2.0, the influence of both the rigid concrete and natural red-earth base decreases. Increase in the contact area of the footing increases the resonant frequency of the model footings resting on finite sand stratum underlain by both the types of finite bases. Both the predicted and the observed resonant frequency ratio decreases with increase in force rating and height to width ratio for a given series of model footing.

5절점 상당요소에 의한 굽힘문제의 정적해석 및 자유진동해석 (Static and Natural Vibration Analyses of Bending Problems Using 5-Node Equivalent Element)

  • 권영두;윤태혁;정승갑;박현철
    • 대한기계학회논문집A
    • /
    • 제20권4호
    • /
    • pp.1320-1332
    • /
    • 1996
  • In the present study, we consider modified 5-node equivalent solid element which has smallest degree of freedom among 2-dimensional solid elements accounting bending deformation as well as extensional and shear deformations, We shall investigate static and dynamic characteristics of this element, which is very effective in thin beam, thick beam, large displacement problems, beam of variable thickness, and asymmetrically stepped beam, etc., as well as relatively simple problems of beam. The degree of freedom of this element is 10, which is smaller than 18 of 9-node element, 16 of 8-node elemtns, 12 of modified 6-node element and Q6 element. Therefore, this element is expected to broaden the effective range of application of the solid elements in the bending problems further.

강성저감을 고려한 플랫슬래브 구조물의 지진해석 (Seismic Analysis of Flat Slab Structures considering Stiffness Degradation)

  • 김현수;이승재;이동근
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2003년도 추계 학술발표회논문집
    • /
    • pp.191-198
    • /
    • 2003
  • Flat slab system has been adopted in many buildings constructed recently because of the advantage of reduced floor heights to meet the economical and architectural demands. Structural engineers commonly use the equivalent frame method(EFM) with equivalent beams proposed by Jacob S. Grossman in practical engineering for the analysis of flat slab structures. However, in many cases, when it is difficult to use the EFM, it is necessary to use a refined finite element model for an accurate analysis. But it would take significant amount of computational time and memory if the entire building structure were subdivided into a finer mesh. An efficient analytical method is proposed in this study to obtain accurate results in significantly reduced computational time. The proposed method employs super elements developed using the matrix condensation technique and fictitious beams are used in the development of super elements to enforce the compatibility at the interfaces of super elements. The stiffness degradation of flat slab system considered in the EFM was taken into account by reducing the elastic modulus of floor slabs in this study. Static and dynamic analyses of example structures were peformed and the efficiency and accuracy of the proposed method were verified by comparing the results with those of the refined finite element model and the EFM.

  • PDF

Effect of relative stiffness on seismic response of subway station buried in layered soft soil foundation

  • Min-Zhe Xu;Zhen-Dong Cui;Li Yuan
    • Geomechanics and Engineering
    • /
    • 제36권2호
    • /
    • pp.167-181
    • /
    • 2024
  • The soil-structure relative stiffness is a key factor affecting the seismic response of underground structures. It is of great significance to study the soil-structure relative stiffness for the soil-structure interaction and the seismic disaster reduction of subway stations. In this paper, the dynamic shear modulus ratio and damping ratio of an inhomogeneous soft soil site under different buried depths which were obtained by a one-dimensional equivalent linearization site response analysis were used as the input parameters in a 2D finite element model. A visco-elasto-plastic constitutive model based on the Mohr-Coulomb shear failure criterion combined with stiffness degradation was used to describe the plastic behavior of soil. The damage plasticity model was used to simulate the plastic behavior of concrete. The horizontal and vertical relative stiffness ratios of soil and structure were defined to study the influence of relative stiffness on the seismic response of subway stations in inhomogeneous soft soil. It is found that the compression damage to the middle columns of a subway station with a higher relative stiffness ratio is more serious while the tensile damage is slighter under the same earthquake motion. The relative stiffness has a significant influence on ground surface deformation, ground acceleration, and station structure deformation. However, the effect of the relative stiffness on the deformation of the bottom slab of the subway station is small. The research results can provide a reference for seismic fortification of subway stations in the soft soil area.

공기포일베어링의 성능에 미치는 범프마찰효과 (Friction Effects on the Performance of Air Foil Bearings)

  • 김영철;이동현;김경웅
    • Tribology and Lubricants
    • /
    • 제21권6호
    • /
    • pp.283-288
    • /
    • 2005
  • This paper presents the theoretical model and analysis results to investigate the effect of Coulomb damping in the sub-structure of a foil bearing. Vertical and horizontal deflection of a bump is restricted by friction of the bump. Equivalent viscous damping of the bump foil is derived from the Coulomb friction. Dynamic equation of the bump is constituted by stiffness and damping terms. The air film is modeled by the compressible Reynolds equation. A perturbation approach and finite difference numerical method is used to determine the static and dynamic performance of the bearing from the coupled fluid-structural model. The analysis result shows that the static and dynamic performance is enhanced by the bump friction.

범프 마찰을 고려한 공기포일베어링의 성능해석 (Performance Analysis of Air Foil Bearings with Bump Friction)

  • 김영철;이동현;김경웅
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2005년도 연구개발 발표회 논문집
    • /
    • pp.803-809
    • /
    • 2005
  • This paper presents the theoretical model to investigate the effect of Coulomb damping in the sub-structure of a foil bearing. Foil deflection is restricted by friction of bumps. Equivalent viscous damping of the bump foils is derived from the Coulomb friction. Dynamic equation of the bumps is constituted by stiffness and damping terms. This point give the difference from Heshmat's frictionless and simple compliance bump model. The fluid is modeled with the compressible Reynolds equation. A perturbation approach is used to determine the static and dynamic performance of the bearing from the coupled fluid-structural model. The analysis result shows that the static and dynamic performance is enhanced by bump friction. This analysis technique would be extended to development of a high performance bearing.

  • PDF

범프마찰을 고려한 공기포일베어링의 성능해석 (Performance Analysis of Air Foil Bearings with Bump Friction)

  • 김영철;이동현;김경웅
    • 한국유체기계학회 논문집
    • /
    • 제9권1호
    • /
    • pp.47-55
    • /
    • 2006
  • This paper presents the theoretical model to investigate the effect of Coulomb damping in the sub-structure of a foil bearing. Foil deflection is restricted by friction of bumps. Equivalent viscous damping of the bump foils is derived from the Coulomb friction. Dynamic equation of the bumps is constituted by stiffness and damping terms. This point give the difference from Heshmat's frictionless and simple compliance bump model. The fluid is modeled with the compressible Reynolds equation. A perturbation approach is used to determine the static and dynamic performance of the bearing from the coupled fluid-structural model. The analysis result shows that the static and dynamic performance is enhanced by bump friction. This analysis technique would be extended to development of a high performance bearing.