• Title/Summary/Keyword: Equivalent Dynamic Stiffness

Search Result 181, Processing Time 0.024 seconds

Design of Unbend Braces Using Capacity Spectrum Method (능력스펙트럼을 이용한 가새형 소성 감쇠기의 설계)

  • 최현훈;김유정;김진구
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2001.09a
    • /
    • pp.260-267
    • /
    • 2001
  • In this study straightforward design procedure for unbond brace hysteretic dampers is developed. The required amount of equivalent damping to satisfy given performance acceptance criteria is obtained conveniently based on the capacity spectrum method without carrying out time-consuming nonlinear dynamic time history analysis. Then the size of the unbend braces is determined from the required equivalent damping. Parametric study is performed for the design variables such as natural period, yield strength, the stiffness after the first yield, yield stress of the unbond brace.

  • PDF

Multi-body Dynamic Analysis for the Drivetrain System of a Large Wind Turbine Based on GL 2010 (GL 2010 기반 대형 풍력터빈 드라이브트레인 시스템 다물체 동역학 해석기법)

  • Jeong, Dae-Ha;Kim, Dong-Hyun;Kim, Myung-Hwan
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.5
    • /
    • pp.363-373
    • /
    • 2014
  • In this study, computational multi-body dynamic analyses for the drivetrain system of a 5 MW class offshore wind turbine have been conducted using efficient equivalent modeling technique based on the design guideline of GL 2010. The present drivetrain system is originally modeled and its related system data is adopted from the NREL 5 MW wind turbine model. Efficient computational method for the drivetrain system dynamics is proposed based on an international guideline for the certification of wind turbine. Structural dynamic behaviors of drivetrain system with blade, hub, shaft, gearbox, supports, brake disk, coupling, and electric generator have been analyzed and the results for natural frequency and equivalent torsional stiffness of the drivetrain system are presented in detail. It is finally shown that the present multi-body dynamic analysis method gives good agreement with the previous results of the 5 MW class wind turbine system.

Introduction of Efficient FE-analysis Method Using Virtual Equivalent Projected Model (VEPM) for Metallic Sandwich Plates with Pyramidal Truss Cores (가상등가투영형상을 이용하여 피라미드형 트러스 코어를 구비한 금속샌드위치 판재의 효율적 해석기법 제안)

  • Seong, D.Y.;Jung, C.G.;Shim, D.S.;Yang, D.Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.262-265
    • /
    • 2007
  • Metallic sandwich plates constructed of two face sheets and low relative density cores have lightweight characteristics and various static and dynamic load bearing functions. To predict the formability and performance of these structured materials, a computationally efficient FE-analysis method incorporating virtual equivalent projected model has been newly introduced for analysis of metallic sandwich plates. Two dimensional models using the projected shapes of 3D structures have the same equivalent elastic-plastic properties with original geometries including anisotropic stiffness, yield strength and linear hardening function. The projected shapes and virtual properties of the virtual equivalent projected model have been estimated analytically with the same equivalent properties and face buckling strength of 3D pyramidal truss core.

  • PDF

Equivalent Beam Joint Modeling and Vibration Analysis Using Vehicle Side Key Sections (차체 Side Key Section 을 이용한 등가빔 결합부 모델링 및 강성해석)

  • Sung, Young-Suk;Yim, Hong-Jae;Kim, Ki-Chang
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.252-257
    • /
    • 2006
  • Low vibration characteristics of a vehicle are mainly influenced by the local stiffness of the joint structure beam section. The method of substituting equivalent beam element to spring element for the joint is presented. Formation process of the equivalent beam joint modeling is described in terms of key section properties. To get required dynamic characteristics section properties of the equivalent beam element are set to design variables. The study shows that the equivalent beam joint model can be effectively used for low frequency vibration analysis of a vehicle.

  • PDF

Experimental Investigation Into the Dynamic Characteristics of Flexible Matrix Composite Driveshafts (유연복합재 구동축의 동특성에 관한 실험 분석)

  • Shin Eung-Soo
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.2
    • /
    • pp.93-98
    • /
    • 2006
  • This study provides a comprehensive experimental study on the dynamic characteristics of a flexible matrix composite(FMC) driveshaft. A primary objective is to verify the analytic results of the FMC drivetrain based on the equivalent complex modulus approach and the classical lamination theory. A test rig has been constructed, which consists of a FMC shaft, a foundation beam, bearings, external dampers and a driving motor. The frequency response functions and transient responses are obtained from the external excitation and the spin-up testings. It turns out that the analytic results are in good agreement with the experimental ones.

Experimental Investigation into the Dynamic Characteristics of Flexible Matrix Composite Driveshafts (유연복합재 구동축의 동특성에 관한 실험 분석)

  • Shin, Eung-Soo;Lim, Byung-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.123-126
    • /
    • 2005
  • This study provides a comprehensive experimental study on the dynamic characteristics of a flexible matrix composite(FMC) driveshaft. A primary objective is to verify the analytic results of the FMC drivetrain based on the equivalent complex modulus approach and the classical lamination theory. A testrig has been constructed, which consists of a FMC shaft, a foundation beam, bearings, external dampers and a driving motor. The frequency response functions and transient responses are obtained from the external excitation and the spinup testings. It turns out that the analytic results are in good agreement with the experimental ones.

  • PDF

Dynamic Property Identification of Structural Systems with Hinge Joint Using Equivalent Stiffness (등가강성모델을 활용한 힌지체결부 동특성 동정)

  • Won, Junho;Lim, Che Kyu;Lee, Doo-Ho;Choi, Joo-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.12
    • /
    • pp.1635-1642
    • /
    • 2012
  • The identification of the dynamic properties of structural joints is important for predicting the dynamic behavior of assembled systems. However, the identification of the properties using analytical or experimental approaches is extremely difficult or even impossible. Several studies have proposed hybrid or synthesis methods that simultaneously used analytical and experimental approaches to identify the dynamic properties of a joint. However, among the many types of joints, only the bolt joint was treated as a practical example in these studies. In this study, for a simple assembly system comprising two plates and one hinge joint, a simple methodology involving the use of the static-based subpart analysis method to identify the dynamic properties is proposed. Finally, the proposed method is applied to a glove box in a passenger vehicle that includes hinge joints.

The Prediction of the Dynamic Transmission Error for the Helical Gear System (헬리컬 기어계의 동적 전달오차의 예측)

  • Park, Chan-Il;Cho, Do-Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.9
    • /
    • pp.1359-1367
    • /
    • 2004
  • The purpose of this study is to predict the dynamic transmission error of the helical gear system. To do so, the equations of motion in the helical gear system which consists of motor, coupling, gear, torque sensor, and brake are derived. As the input parameters, the mass moment of inertia by a 3D CAD software and the equivalent stiffness of the bearings and shaft are calculated and the coupling stiffness is measured. The static transmission error as an excitation is calculated by in-house program. Dynamic transmission error is predicted by solving the equations of motion. Mode shape, the dynamic mesh force and the bearing force are also calculated. In this analysis, the relationship between the dynamic mesh force and the bearing force and mode shape behavior in gear mesh are checked. As a result, the magnitude of mesh force is highly related with the gear mesh behavior in mode shape. The finite element analysis is conducted to find out the natural frequency of gear system. The natural frequencies by finite element analysis have a good agreement with the results by equation of motion. Finally, dynamic transmission error is measured by the specially designed experiment and the results by equation of motion are validated.

Wind-resistant performance of cable-supported bridges using carbon fiber reinforced polymer cables

  • Zhang, Xin-Jun;Ying, Lei-Dong
    • Wind and Structures
    • /
    • v.10 no.2
    • /
    • pp.121-133
    • /
    • 2007
  • To gain understanding of the applicability of carbon fiber reinforced polymer (CFRP) cable in cable-supported bridges, based on the Runyang Bridge and Jinsha Bridge, a suspension bridge using CFRP cables and a cable-stayed bridge using CFRP stay cables are schemed, in which the cable's cross-sectional area is determined by the principle of equivalent axial stiffness. Numerical investigations on the dynamic behavior, aerostatic and aerodynamic stability of the two bridges are conducted by 3D nonlinear analysis, and the effect of different cable materials on the wind resistance is discussed. The results show that as CFRP cables are used in cable-supported bridges, (1) structural natural frequencies are all increased, and particularly great increase of the torsional frequency occurs for suspension bridges; (2) under the static wind action, structural deformation is increased, however its aerostatic stability is basically remained the same as that of the case with steel cables; (3) for suspension bridge, its aerodynamic stability is superior to that of the case with steel cables, but for cable-stayed bridge, it is basically the same as that of the case with steel stay cables. Therefore as far as the wind resistance is considered, the use of CFRP cables in cable-supported bridges is feasible, and the cable's cross-sectional area should be determined by the principle of equivalent axial stiffness.