• Title/Summary/Keyword: Equivalent Circuit Model(ECM)

Search Result 7, Processing Time 0.024 seconds

Modeling and performance evaluation of a piezoelectric energy harvester with segmented electrodes

  • Wang, Hongyan;Tang, Lihua;Shan, Xiaobiao;Xie, Tao;Yang, Yaowen
    • Smart Structures and Systems
    • /
    • v.14 no.2
    • /
    • pp.247-266
    • /
    • 2014
  • Conventional cantilevered piezoelectric energy harvesters (PEHs) are usually fabricated with continuous electrode configuration (CEC), which suffers from the electrical cancellation at higher vibration modes. Though previous research pointed out that the segmented electrode configuration (SEC) can address this issue, a comprehensive evaluation of the PEH with SEC has yet been reported. With the consideration of delivering power to a common load, the AC outputs from all segmented electrode pairs should be rectified to DC outputs separately. In such case, theoretical formulation for power estimation becomes challenging. This paper proposes a method based on equivalent circuit model (ECM) and circuit simulation to evaluate the performance of the PEH with SEC. First, the parameters of the multi-mode ECM are identified from theoretical analysis. The ECM is then established in SPICE software and validated by the theoretical model and finite element method (FEM) with resistive loads. Subsequently, the optimal performances with SEC and CEC are compared considering the practical DC interface circuit. A comprehensive evaluation of the advantageous performance with SEC is provided for the first time. The results demonstrate the feasibility of using SEC as a simple and effective means to improve the performance of a cantilevered PEH at a higher mode.

Modeling Process of Lithium-Ion Battery for HEV Considering EIS (EIS를 이용한 하이브리드 자동차용 리튬 이온 전지 모델링 방법)

  • Jeon, Jisu;Kim, Nari;Lim, Dong-Jin;Ahn, Jung-Hoon;Lee, Byoung-Kuk
    • Proceedings of the KIPE Conference
    • /
    • 2015.11a
    • /
    • pp.99-100
    • /
    • 2015
  • 본 논문은 Hybrid Electric Vehicle용 리튬이온배터리의 ECM (Equivalent Circuit Model) 선정 방법을 제안한다. 전기 회로를 구성하는 성분들의 특징을 분석하고, 그 결과와 EIS (Electrochemical Impedance Spectroscopy) 장비의 측정 결과를 참고하여 배터리를 모델링한다. 다양한 종류의 배터리에 이 방법을 적용하여 각 배터리에 적합한 ECM을 선정하고, 그 임피던스를 EIS 측정 결과에 비교하여 타당성을 검증한다. 또한, 기존에 제시된 ECM과 비교하여 정확도 개선을 평가한다.

  • PDF

The Characteristic Analysis of Vector Control in a Linear Induction Motor Considering Static and Dynamic End Effects (정적 및 동적 단부효과를 고려한 선형 유도 전동기의 벡터제어 특성해석)

  • Kim, Dae-Gyeong;Gwon, Byeong-Il;U, Gyeong-Il
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.8
    • /
    • pp.413-424
    • /
    • 2002
  • Recently, in the linear motion system, high performances are required In dynamic characteristics. Vector control method is capable of instantaneous thrust control can meet these high performance requirements. Linear induction motor(LIM) have static and dynamic end effects due to its finite core length, so that per-phase impedances are asymmetric and an air gap flux distribution is distorted. These points of the d-q axis equivalent circuit model considering both end effects is more complicated. This paper proposes the d-q axis equivalent circuit and the vector control method considering both static and dynamic end effects of the LIM. As a result, it is shown that the results of the equivalent circuit method(ECM) have a good agreement with those of the finite element method(FEM).

Analysis and Experiment Verification of Heat Generation Factor of High Power 18650 Lithium-ion Cell (고출력 18650 리튬이온 배터리의 발열인자 해석 및 실험적 검증)

  • Kang, Taewoo;Yoo, Kisoo;Kim, Jonghoon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.24 no.5
    • /
    • pp.365-371
    • /
    • 2019
  • This study shows the feasibility of the parameter of the 1st RC parallel equivalent circuit as a factor of the heat generation of lithium-ion cell. The internal resistance of a lithium-ion cell consists of ohmic and polarization resistances. The internal resistances at various SOCs of the lithium-ion cell are obtained via an electrical characteristic test. The internal resistance is inversely obtained through the amount of heat generated during the experiment. By comparing the resistances obtained using the two methods, the summation of ohmic and polarization resistances is identified as the heating factor of lithium-ion battery. Finally, the amounts of heat generated from the 2C, 3C, and 4C-rate discharge experiments and the COMSOL multiphysics simulation using the summation of ohmic and polarization resistances as the heating parameter are compared. The comparison shows the feasibility of the electrical parameters of the 1st RC parallel equivalent circuit as the heating factor.

Design, Analysis, and Equivalent Circuit Modeling of Dual Band PIFA Using a Stub for Performance Enhancement

  • Yousaf, Jawad;Jung, Hojin;Kim, Kwangho;Nah, Wansoo
    • Journal of electromagnetic engineering and science
    • /
    • v.16 no.3
    • /
    • pp.169-181
    • /
    • 2016
  • This work presents a new method for enhancing the performance of a dual band Planer Inverted-F Antenna (PIFA) and its lumped equivalent circuit formulation. The performance of a PIFA in terms of return loss, bandwidth, gain, and efficiency is improved with the addition of the proposed open stub in the radiating element of the PIFA without disturbing the operating resonance frequencies of the antenna. In specific cases, various simulated and fabricated PIFA models illustrate that the return loss, bandwidth, gain, and efficiency values of antennas with longer optimum open stub lengths can be enhanced up to 4.6 dB, 17%, 1.8 dBi, and 12.4% respectively, when compared with models that do not have open stubs. The proposed open stub is small and does not interfere with the surrounding active modules; therefore, this method is extremely attractive from a practical implementation point of view. The second presented work is a simple procedure for the development of a lumped equivalent circuit model of a dual band PIFA using the rational approximation of its frequency domain response. In this method, the PIFA's measured frequency response is approximated to a rational function using a vector fitting technique and then electrical circuit parameters are extracted from it. The measured results show good agreement with the electrical circuit results. A correlation study between circuit elements and physical open stub lengths in various antenna models is also discussed in detail; this information could be useful for the enhancement of the performance of a PIFA as well as for its systematic design. The computed radiated power obtained using the electrical model is in agreement with the radiated power results obtained through the full wave electromagnetic simulations of the antenna models. The presented approach offers the advantage of saving computation time for full wave EM simulations. In addition, the electrical circuit depicting almost perfect characteristics for return loss and radiated power can be shared with antenna users without sharing the actual antenna structure in cases involving confidentiality limitations.

Simultaneous Estimation of State of Charge and Capacity using Extended Kalman Filter in Battery Systems (확장칼만필터를 활용한 배터리 시스템에서의 State of Charge와 용량 동시 추정)

  • Mun, Yejin;Kim, Namhoon;Ryu, Jihoon;Lee, Kyungmin;Lee, Jonghyeok;Cho, Wonhee;Kim, Yeonsoo
    • Korean Chemical Engineering Research
    • /
    • v.60 no.3
    • /
    • pp.363-370
    • /
    • 2022
  • In this paper, an estimation algorithm for state of charge (SOC) was applied using an equivalent circuit model (ECM) and an Extended Kalman Filter (EKF) to improve the estimation accuracy of the battery system states. In particular, an observer was designed to estimate SOC along with the aged capacity. In the case of the fresh battery, when SOC was estimated by Kalman Filter (KF), the mean absolute percentage error (MAPE) was 0.27% which was smaller than MAPE of 1.43% when the SOC was calculated by the model without the observer. In the driving mode of the vehicle, the general KF or EKF algorithm cannot be used to estimate both SOC and capacity. Considering that the battery aging does not occur in a short period of time, a strategy of periodically estimating the battery capacity during charging was proposed. In the charging mode, since the current is fixed at some intervals, a strategy for estimating the capacity along with the SOC in this situation was suggested. When the current was fixed, MAPE of SOC estimation was 0.54%, and the MAPE of capacity estimation was 2.24%. Since the current is fixed when charging, it is feasible to estimate the battery capacity and SOC simultaneously using the general EKF. This method can be used to periodically perform battery capacity correction when charging the battery. When driving, the SOC can be estimated using EKF with the corrected capacity.

A State-of-Charge estimation using extended Kalman filter for battery of electric vehicle (확장칼만필터를 이용한 전기자동차용 배터리 SOC 추정)

  • Ryu, Kyung-Sang;Kim, Byungki;Kim, Dae-Jin;Jang, Moon-seok;Ko, Hee-sang;Kim, Ho-Chan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.10
    • /
    • pp.15-23
    • /
    • 2017
  • This paper reports a SOC(State-of-Charge) estimation method using the extended Kalman filter(EKF) algorithm, which can allow real-time implementation and reduce the error of the model and be robust against noise, to accurately estimate and evaluate the charging/discharging state of the EV(Electric Vehicle) battery. The battery was modeled as the first order Thevenin model for the EKF algorithm and the parameters were derived through experiments. This paper proposes the changed method, which can have the SOC to 0% ~ 100% regardless of the aging of the battery by replacing the rated capacity specified in the battery with the maximum chargeable capacity. In addition, This paper proposes the EKF algorithm to estimate the non-linearity interval of the battery and simulation result based on Ah-counting shows that the proposed algorithm reduces the estimation error to less than 5% in all intervals of the SOC.