• Title/Summary/Keyword: Equivalent Antenna Model

Search Result 46, Processing Time 0.021 seconds

Radiation Efficiency Improvement of RFID Tag Antenna for Metallic Objects Printed on Lossy Substrate (손실 기판을 이용한 금속 부착형 RFID 태그 안테나의 복사 효율 향상)

  • Son, Hae-Won;Choi, Won-Kyu;Choi, Gil-Young
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.11
    • /
    • pp.1265-1271
    • /
    • 2008
  • In this paper, we propose a new antenna design method for RFID tass on metallic surfaces using a low-cost, high-loss substrate such as FR4. The proposed design method highly reduces the substrate loss due to its dielectric loss, and so improves the radiation efficiency of the tag antenna more than double compared with a conventional PIFA(planar inverted-F antenna). The equivalent circuit model of the antenna according to the proposed method was established and its characteristics were analyzed systematically in this paper. The excellency of the proposed design method was verified by the fabrication and measurement of a prototype antenna.

A method of optimum design based on reliability for antenna structures

  • Chen, Jianjun;Wang, Fanglin;Sun, Huaian;Zhang, Chijiang
    • Structural Engineering and Mechanics
    • /
    • v.8 no.4
    • /
    • pp.401-410
    • /
    • 1999
  • A method of optimum design based on reliability for antenna structures is presented in this paper. By constructing the equivalent event, the formula is derived for calculating the reliability of reflector accuracy of antenna under the action of random wind load. The optimal model is developed, in which the cross sectional areas of member are treated as design variables, the structure weight as objective function, the reliability of reflector accuracy and the strength or stability of structural elements as constraints. The improved accelerated convergence gradient algorithm developed by the author is used. The design results show that the method in this paper is feasible and effective.

Design of an Electrically Small Antenna Using Metamaterial Structure (메타물질 구조를 이용한 전기적 소형 안테나의 설계)

  • Lee, Hong-Min
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.3 no.1
    • /
    • pp.24-30
    • /
    • 2010
  • In this paper, a novel electrically small monopole type resonant antenna is proposed. The very short length monopole (${\iota}{\approx}{\lambda}_g/15$ ) acts as a capacitive element and the slot on the ground structure acts as an inductive element, hence the combined system with these two elements thus form an LC resonator. The equivalent circuit model of the antenna structure was used to analysis and qualify the design correctness. Although the proposed antenna has very small size, it shows good performances. The measured maximum gain and radiation efficiency of the fabricated antenna at the frequency of 2.1 GHz was 3.6 dBi and 77.8 %, respectively.

  • PDF

Analysis of Receiving Responses for a Bistatic Ground-Penetrating Radar System by Using Equivalent Network Model (등가회로망 모델을 이용한 Bistatic 지하탐사 레이더 시스템의 수신응답 해석)

  • 현승엽
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.37 no.6
    • /
    • pp.404-404
    • /
    • 2000
  • The receiving responses of a bistatic GPR system are analyzed by using three-dimensional FDTD method and equivalent network model. The conventional delta-gap feed model may be inaccurate because of neglecting the impedance matching characteristics between the antenna and the transmission line. In this paper, the feed model is improved by considering the physical characteristics of the actual GPR. The actually received voltage is calculated by employing the equivalent network model in angular frequency-domain, which is composed by using the results of three-dimensional FDTD analysis for an actual bistatic GPR system. The validity of the presented model is assured by showing the convergence of the computed results to the measured data.

Analysis of Receiving Responses for a Bistatic Ground-Penetrating Radar System by Using Equivalent Network Model (등가회로망 모델을 이용한 Bistatic 지하탐사 레이더 시스템의 수신응답 해석)

  • Hyeon, Seung-Yeop;Kim, Sang-Uk;Kim, Se-Yun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.37 no.6
    • /
    • pp.44-53
    • /
    • 2000
  • The receiving responses of a bistatic GPR system are analyzed by using three-dimensional FDTD method and equivalent network model. The conventional delta-gap feed model may be inaccurate because of neglecting the impedance matching characteristics between the antenna and the transmission line. In this paper, the feed model is improved by considering the physical characteristics of the actual GPR. The actually received voltage is calculated by employing the equivalent network model in angular frequency-domain, which is composed by using the results of three-dimensional FDTD analysis for an actual bistatic GPR system. The validity of the presented model is assured by showing the convergence of the computed results to the measured data.

  • PDF

Small Broadband Rectangular Disk-Loaded Monopole Antenna with Electromagnetically Coupled Feed (전자기적 결합 급전 소형 광대역 사각 디스크-로디드 모노폴 안테나)

  • 정종호;박익모
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.7
    • /
    • pp.653-660
    • /
    • 2004
  • This paper presents monopole antenna with electromagnetically coupled feed and its equivalent circuit model. The proposed structure is consists of a rectangular disk-loaded monopole and a probe with rectangular spiral strip line feed. The rectangular disk-loaded monopole is represented by parallel RLC resonant circuit and the probe with rectangular spiral strip line feed is represented by series RLC resonant circuit. Therefore broad bandwidth can be achieved through electromagnetic coupling between these structures that generate two resonances within close frequency range. The antenna with electrical dimensions of only 0.075λ$\sub$0/${\times}$0.075λ$\sub$0/${\times}$0.075λ$\sub$0/ has 16.5 % fractional bandwidth for VSWR$\leq$2 at a center frequency of 2.038GHz.

Design of a Small Microstrip Antenna to load Capacitors (용량을 장하한 소형 마이크로스트립 안테나 설계)

  • Ko, Young-Hyuk;Sun, Seung-Ho
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.38 no.6
    • /
    • pp.18-27
    • /
    • 2001
  • In this paper, the MSA to load a capacitor without limitation of the electric force on the transformed MSA is proposed. Bandwidth of the proposed antenna is 7.76% at the resonant frequency of 1.9 GHz, is observed the resonant frequency and bandwidth versus change of any arbitrary feed point. It was found that the bandwidth of this MSA to load a capacitor is broader than that of the transformed MSA. Antenna,s equivalent circuit with transmission line model is designed to find more accurate resonant frequency and is calculated return loss value. The calculated value is agreed resonably with experimental value.

  • PDF

Design and Manufacture of X-Band 10 X 10 Waveguide Slot Array Antenna for SAR (SAR용 X-밴드 10 10도파관 슬롯 배열 안테나 설계 및 제작)

  • 신영종;이범선
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.11
    • /
    • pp.1019-1025
    • /
    • 2004
  • The X-band 10${\times}$10 waveguide slot array antenna for SAR is designed, fabricated and measured. The array antenna is designed using the equivalent circuit model based on the field distribution of the dominant mode, TE$\sub$10/, and EM simulation. The method to decide optimum angle of the centered inclined slot(coupling slot) and the optimum of offset of the longitudinal slot(radiating slot) is provided. The designed antenna structure is EM simulated and fabricated. The measured return loss bandwidth is 180 MHz at 9.15 GHz , the side lobe level is below -25 dB, HPBW is about 9$^{\circ}$, and the gain is 25.5 dB. These results are similar to the simulation data.

Calculating Array Patterns Using an Active Element Pattern Method with Ground Edge Effects

  • Lee, Sun-Gyu;Lee, Jeong-Hae
    • Journal of electromagnetic engineering and science
    • /
    • v.18 no.3
    • /
    • pp.175-181
    • /
    • 2018
  • The array patterns of a patch array antenna were calculated using an active element pattern (AEP) method that considers ground edge effects. The classical equivalent radiation model of the patch antenna, which is characterized by two radiating slots, was adopted, and the AEPs that include mutual coupling were precisely calculated using full-wave simulated S-parameters. To improve the accuracy of the calculation, the edge diffraction of a ground plane was incorporated into AEP using the uniform geometrical theory of diffraction. The array patterns were then calculated on the basis of the computed AEPs. The array patterns obtained through the conventional AEP approach and the AEP method that takes ground edge effects into account were compared with the findings derived through full-wave simulations conducted using a High Frequency Structure Simulator (HFSS) and FEKO software. Results showed that the array patterns calculated using the proposed AEP method are more accurate than those derived using the conventional AEP technique, especially under a small number of array elements or under increased steering angles.

A Comparison Study of Antenna Feed Models Suitable for Computation of Responses for a Ground-Penetrating Radar (지하탐사 레이더의 응답 계산에 적합한 안테나 급전모델의 비교 연구)

  • Hyun, Seung-Yeup;Kim, Se-Yun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.38 no.2
    • /
    • pp.19-27
    • /
    • 2001
  • All accurate and efficient antenna feed model is very important for computing GPR response using the FDTD method In literature, there are several feed models such as the equivalent network in angular-frequency domain, 1-D transmission-line cell, voltage boundary condition in time domain, etc. In this paper, theoretical relationship among the models is investigated. It is found that the above three models become equivalent when a short and lossless feed line can match with its connected transmitter receiver). In view of accuracy and efficiency of the simulation, the FDTD results according to the feed models arc compared with the measured data of the receiving responses for an actual GPR system.

  • PDF