• Title/Summary/Keyword: Equipment wear

Search Result 214, Processing Time 0.023 seconds

A Study on Wear Characteristics of Degraded Stainless Steel (열화된 스테인리스강의 마모특성에 관한 연구)

  • Cho, Sung-Duck;Ahn, Seok-Hwan;Nam, Ki-Woo
    • Journal of Power System Engineering
    • /
    • v.21 no.6
    • /
    • pp.21-30
    • /
    • 2017
  • This study deals with the characteristics of degraded stainless steel. Stainless steel is heat treated to ensure mechanical properties when designing or manufacturing machinery parts or equipment. In this study, the mechanical properties and wear characteristics of three kinds of stainless steels after artificially heat-treated at 753 K~993 K, where chrome depletion occurs near the grain boundary, were evaluated. The microstructure and fracture surface were also observed. From the results, friction coefficient and wear loss decreased with increasing the heat treatment temperature regardless of the type of stainless steel. Also, as the tensile strength increased, the friction coefficient and wear loss decreased. Wear loss showed proportional to a tendency to increase with increasing friction coefficient.

A study on the taping techniques of functional golf inner-wear for improving golf swing trajectory & shot distance (골프 스윙궤적 및 비거리 향상을 위한 기능성 골프 이너웨어의 테이핑 기법 연구)

  • Jungwoo Kim
    • The Research Journal of the Costume Culture
    • /
    • v.32 no.1
    • /
    • pp.58-69
    • /
    • 2024
  • The purpose of this study was to develop the Functional golf inner-wear by preventing the injuries and enhancing the performance of the Golf swing by checking the influence of the wearing of the functional golf inner-wear considering golf characteristics on the Swing trajectory and Shot distance. Functional inner-wear effective for golf swing was manufactured using the sports taping method. Changes in driver and iron swing before and after wearing the functional golf inner-wear manufactured in this way were measured using trackman equipment. Measurement variables were limited to Club Speed, Attack Angle, Club Path, Ball Speed, Smash Factor, and Priority. Before and after wearing functional golf inner-wear, there were statistically significant differences in driver club speed, iron club speed, driver etch angle, iron club pass, driver ball speed, driver smash factor, iron smash factor, driver carry, iron carry, and right shoulder joint proprioceptive sensory ability. As a result, functional golf inner-wear is effective for ball speed, impact, and carry by increasing club speed and efficient swing. Future research will focus on the development of functional golf that can improve the swing ability in a short game that plays an important role in the golf game through various sports taping grafting technique, textile, special material, film, Research on functional golf inner-wear.

Component and Bench Tests of Polyurethane Hydraulic Reciprocating Seal for Accelerated Life Testing (부품 및 벤치 실험을 통한 폴리우레탄 유압 왕복 실의 가속 실험)

  • Je, Youngwan;Kim, Hansol;Kim, Lyu-Woon;Chung, Koo-Hyun;An, Joong-Hyok;Jeon, Hong-Gyu
    • Tribology and Lubricants
    • /
    • v.30 no.5
    • /
    • pp.271-277
    • /
    • 2014
  • Hydraulic reciprocating seals have been widely used to prevent fluid leakage and to provide lubricant film on counter surface in various hydraulic system. The degradation of the seal may cause the catastrophic failure of the hydraulic system. To assess the durability of the seals and the compatibility with counter surface, accelerated life testing (ALT) has been typically employed from industry. However, ALT often takes up to a few months to cause a failure of the seals, and therefore, there is a need to develop more efficient ALT methods. In this work, the degradation characteristics of polyurethane (PU) seals from field test are investigated and they are compared to those from the component and bench tests, with an aim to contribute to the development of ALT method. From the comparison of the cross-sectional profiles of the sealing surface of the PU specimens before and after the tests, both wear and compression set are found to be responsible for degradation of the PU seals. It is also shown that the major wear mechanisms of the PU seals from the field is abrasive wear and formation of pits. The component and bench tests performed in this work are shown to reproduce such wear mechanisms, and therefore, those test methods can be used as an ALT method for PU seals. In particular, the bench test proposed in this work may be effectively utilized to assess the durability and the compatibility of the seals with the counter surface. The results of this work are expected to aid in the design of ALT for PU seal.

Improved System for Establishing a Culture to Wear Personal Protective Gear (개인보호구 착용문화 정착을 위한 제도개선)

  • Jeung, Sueng Hyo;Lee, Yong-Soo;Kim, ChangEun
    • Journal of the Korea Institute of Construction Safety
    • /
    • v.2 no.1
    • /
    • pp.16-20
    • /
    • 2019
  • About 50% of disasters occurring at domestic construction sites are caused by the accidents not wearing personal protective equipment. Under the current statutes, employers are required to provide personal protective equipment and workers are required to wear personal protective equipment. However, there is insufficient compliance with wearing personal protective equipment on site. This study is about the measure of improving the system to the way of purchasing, wearing and managing personal protective equipment by individual workers, and refunding the cost of personal protective equipment to workers. It is expected that this thesis will improve the system of personal protective equipment effectively, and contribute to the prevention of disasters by settling the culture of wearing personal protective equipment.

Behavior on the wear and friction of sealing composite for ship machinery (선박기계용 실링 복합재료의 마모 및 마찰거동)

  • LEE, Jung-Kyu;KOH, Sung Wi
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.53 no.2
    • /
    • pp.204-209
    • /
    • 2017
  • In order to use PUR/CuO Composites as the sealing materials for ships equipment, this research has been performed. PUR/CuO composites are produced by using ultrasonic waves. The increase of CuO leads to increase in the tensile strength and shore hardness. The cumulative wear volume shows a tendency to increase in proportional to sliding distance. As the CuO particles of these composites indicated, the friction coefficient was slightly increased. The major failure mechanisms were lapping layers, deformation of matrix, plowing, debonding of particles and microcracking by scanning electric microscopy photograph of the wear tested surface.

Machine Learning Data Analysis for Tool Wear Prediction in Core Multi Process Machining (코어 다중가공에서 공구마모 예측을 위한 기계학습 데이터 분석)

  • Choi, Sujin;Lee, Dongju;Hwang, Seungkuk
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.9
    • /
    • pp.90-96
    • /
    • 2021
  • As real-time data of factories can be collected using various sensors, the adaptation of intelligent unmanned processing systems is spreading via the establishment of smart factories. In intelligent unmanned processing systems, data are collected in real time using sensors. The equipment is controlled by predicting future situations using the collected data. Particularly, a technology for the prediction of tool wear and for determining the exact timing of tool replacement is needed to prevent defected or unprocessed products due to tool breakage or tool wear. Directly measuring the tool wear in real time is difficult during the cutting process in milling. Therefore, tool wear should be predicted indirectly by analyzing the cutting load of the main spindle, current, vibration, noise, etc. In this study, data from the current and acceleration sensors; displacement data along the X, Y, and Z axes; tool wear value, and shape change data observed using Newroview were collected from the high-speed, two-edge, flat-end mill machining process of SKD11 steel. The support vector machine technique (machine learning technique) was applied to predict the amount of tool wear using the aforementioned data. Additionally, the prediction accuracies of all kernels were compared.

Prediction of TBM disc cutter wear based on field parameters regression analysis

  • Lei She;Yan-long Li;Chao Wang;She-rong Zhang;Sun-wen He;Wen-jie Liu;Min Du;Shi-min Li
    • Geomechanics and Engineering
    • /
    • v.35 no.6
    • /
    • pp.647-663
    • /
    • 2023
  • The investigation of the disc cutter wear prediction has an important guiding role in TBM equipment selection, project planning, and cost forecasting, especially when tunneling in a long-distance rock formations with high strength and high abrasivity. In this study, a comprehensive database of disc cutter wear data, geological properties, and tunneling parameters is obtained from a 1326 m excavated metro tunnel project in leptynite in Shenzhen, China. The failure forms and wear consumption of disc cutters on site are analyzed with emphasis. The results showed that 81% of disc cutters fail due to uniform wear, and other cutters are replaced owing to abnormal wear, especially flat wear of the cutter rings. In addition, it is found that there is a reasonable direct proportional relationship between the uniform wear rate (WR) and the installation radius (R), and the coefficient depends on geological characteristics and tunneling parameters. Thus, a preliminary prediction formula of the uniform wear rate, based on the installation radius of the cutterhead, was established. The correlation between some important geological properties (KV and UCS) along with some tunneling parameters (Fn and p) and wear rate was discussed using regression analysis methods, and several prediction models for uniform wear rate were developed. Compared with a single variable, the multivariable model shows better prediction ability, and 89% of WR can be accurately estimated. The prediction model has reliability and provides a practical tool for wear prediction of disc cutter under similar hard rock projects with similar geological conditions.

Study on Consumer Awareness for the Development of Personal Protective Equipment for Hog Raisers (양돈작업자의 개인보호구 개발을 위한 소비자 인식조사)

  • Hwang, Young-Mi;Kim, Kyung-Ran;Lee, Kyung-Suk;Chae, Hye-Seon
    • Journal of Environmental Health Sciences
    • /
    • v.39 no.6
    • /
    • pp.522-531
    • /
    • 2013
  • Objectives: A field survey was conducted in a hog-raising industry in order to help develop personal protective equipment for workers which would secure the safety and the health of these workers. The attempt by this study will help enhance safety in the livestock industry and contribute to the advancement of the industry. Method: The study first selected a total of 111 workers from the hog-raising industry as research participants and designed a survey with questions on general characteristics, indoor and outdoor working environments, how the workers would in practice wear or purchase the working clothes, what needs to be improved in these new working clothes, how much the workers would be likely to accept the working clothes and protective equipment, and lastly, conditions of the communicable disease control overgarment. The collected data underwent frequency analysis and cross analysis with SPSS 21.0. Result: The research targets' average age was 50 years. Work efficiency by environmental factor was normal, but all age groups had experience of accidents (79.3%). Major wounded parts were under elbow and under knee. Protective equipment most commonly worn was helmet (83.4%), gloves (98.2%) and boots (99.1%), and satisfaction with them was normal at 3.41. Working clothing most commonly worn was old clothing (31.8%) and everyday wear (17.6%) and satisfaction with it was low. Considering the improvement of working clothing, they required attached pouches, elasticity and deodorization. The acceptability of improved working clothing was high at 69.2%. Conclusion: After problems have been addressed in relevant future research, what has been learned from the concerned study will be referred to as a useful basic reference when the relevant field works to develop high-quality working clothing and protective equipment for workers in the hog-raising industry.

A Study on Tool Wear and AE Signal Characteristics in Face Milling of SUS304 (SUS304의 정면밀링 가공시 공구마모와 AE신호 특성에 관한 연구)

  • Oh, S.H.;Kim, S.I.;Kim, T.Y.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.3
    • /
    • pp.5-14
    • /
    • 1995
  • In recent years, the automization of cutting machine tools has been developed very fast. Hance, the in-process detection of cutting condition is very important for automatic manufacturing system in factory. Acoustic Emission(AE) has been widely used in monitoring the cutting conditions, because of high sensitivity of AE signal and low cost of AE equipment. This experimental study deals with the relations between AE signal, cutting force charcteristics and tool wear in the machining of SUS304. Face milling operation is used for the analysis between tool wear and AE signal.

  • PDF