• Title/Summary/Keyword: Equilibrium shape

Search Result 247, Processing Time 0.021 seconds

Stability and Post-Buckling Analyses of Thin-Walled Space Frames Using Finite Element Method (박벽 공간뼈대구조의 안정성 및 후좌굴 유한요소해석)

  • 김문영;안성원
    • Computational Structural Engineering
    • /
    • v.10 no.4
    • /
    • pp.205-216
    • /
    • 1997
  • In order to trace the lateral post-buckling behaviors of thin-wafled space frames, a geometrically nonlinear finite element formulation is presented by applying incremental equilibrium equations based on the updated Lagrangian formulation and introducing Vlasov's assumption. The improved displacement field for symmetric thin-walled cross sections is introduced based on inclusion of second order terms of finite rotations, and the potential energy corresponding to the semitangential rotations and moments is consistently derived. For finite element analysis, tangent stiffness matrices of the thinwalled space frame element with 7 degrees of freedom including the restrained warping for each node are derived by using the Hermition polynomials as shape functions. A co-rotational formulation in order to evaluate the unbalanced loads is presented by separating the rigid body rotations and pure deformations from incremental displacements and evaluating the updated direction cosines of the frame element due to rigid body rotations and incremental member forces from pure deformations. Finite element solutions for the spatial buckling and post-buckling analysis of thin-walled space frames are presented and compared with available solutions and other researcher's results.

  • PDF

Geometrically Non-linear Finite Element Analysis of Space Frames (공간뼈대구조의 기하학적 비선형 유한요소해석)

  • 김문영;안성원
    • Computational Structural Engineering
    • /
    • v.10 no.1
    • /
    • pp.201-211
    • /
    • 1997
  • A clearly consistent finite element formulation for geometrically non-linear analysis of space frames is presented by applying incremental equilibrium equations based on the updated Lagrangian formulation and introducing Vlasov's assumption. The improved displacement field for symmetric cross sections is introduced based on inclusion of second order terms of finite rotations, and the potential energy corresponding to the semitangential rotations and moments is consistently derived. For finite element analysis, elastic and geometric stiffness matrices of the space frame element are derived by using the Hermitian polynomials as shape functions. A co-rotational formulation in order to evaluate the unbalanced loads is presented by separating the rigid body rotations and pure deformations from incremental displacements and evaluating the updated direction cosines of the frame element due to rigid body rotations and incremental member forces from pure deformaions. Finite element solutions for the spatial buckling and post-buckling analysis of space frames are compared with available solutions and other researcher's results.

  • PDF

A Numerical Study on Effects of Displacement of a Variable Area Nozzle on Flow and Thrust in a Jet Engine (가변노즐의 변위가 제트 엔진의 유동 및 추력특성에 미치는 영향에 관한 수치해석)

  • Park, Junho;Sohn, Chae Hoon;Park, Dong Chang
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.5
    • /
    • pp.1-9
    • /
    • 2013
  • Variable area nozzle, where both throat and exit area vary, is required for optimal expansion and optimal nozzle shape upon operation of after-burner. Steady-state and transient analyses are carried out for each condition with and without afterburner operation and as a function of the location of the nozzle flap. Effects of that nozzle displacement on flow and thrust characteristics are analyzed from numerical results. With variable area nozzle adopted, the combustion field is variable in time, leading to periodically variable thrust. For off-design conditions, flow separation shows up due to over expansion at the flap tips and shock wave does in the nozzle due to under expansion. The undesirable phenomena can be solved by control of variable area nozzle.

Effects of La2O3 on the Piezoelectric Properties of Lead-Free (Bi0.5Na0.5)0.94Ba0.06TiO3 Piezoelectric Ceramics (무연 BNBT 세라믹스의 압전특성에 미치는 La2O3의 영향)

  • Son Young-Jin;Yoon Man-Soon;Ur Soon-Chul
    • Korean Journal of Materials Research
    • /
    • v.15 no.12
    • /
    • pp.756-759
    • /
    • 2005
  • A lead free piezoelectric material, bismuth sodium barium titanate $(Bi_{0.5}Na_{0.5})_{0.94}Ba_{0.06}TiO_3$ (BNBT), was considered as an environment-friendly alternatives for the current PZT system. A perovskite BNBT was synthesized by conventional bulk ceramic processing technique. In order to improve piezoelectric properties, $La_2O_3$ as a dopant was incorporated into the BNBT system up to 0.025 moi, ana the effects on subsequent the piezoelectric ana dielectric properties were systematically investigated. With increasing $La_2O_3$ contents, the equilibrium grain shape was remarkably evidenced and sintered density was increased. Piezoelectric and dielectric properties were s]town to have maximum values at the $La_2O_3$ contents of 0.02 mol. $La^{3+}$ ions seemed to act as a softener in the BNBT system and to enhance dielectric and piezoelectric properties in this study.

Dynamic Analysis of MLS Difference Method using First Order Differential Approximation (1차 미분 근사를 이용한 MLS차분법의 동적해석)

  • Kim, Kyeong-Hwan;Yoon, Young-Cheol;Lee, Sang-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.31 no.6
    • /
    • pp.331-337
    • /
    • 2018
  • This paper presents dynamic algorithm of the MLS(moving least squares) difference method using first order differential Approximation. The governing equations are only discretized by the first order MLS derivative approximation. The system equation consists of an assembly of the approximate function, so the shape of system equation is similar to FEM(finite element method). The CDM(central difference method) is used for time integration of dynamic equilibrium equation. The natural frequency analyses of the MLS difference method and FEM are performed, and two analysis results are compared. Also, the accuracy of the proposed numerical method is verified by displaying the dynamic analysis results together with the results by the existing second order differential approximation. In the process of assembling the first order MLS derivative approximation, the oscillation error was suppressed and the stress distribution was interpreted as relatively uniform.

Analytical methods for determining the cable configuration and construction parameters of a suspension bridge

  • Zhang, Wen-ming;Tian, Gen-min;Yang, Chao-yu;Liu, Zhao
    • Structural Engineering and Mechanics
    • /
    • v.71 no.6
    • /
    • pp.603-625
    • /
    • 2019
  • Main cable configurations under final dead load and in the unloaded state and critical construction parameters (e.g. unstrained cable length, unstrained hanger lengths, and pre-offsets for tower saddles and splay saddles) are the core considerations in the design and construction control of a suspension bridge. For the purpose of accurate calculations, it is necessary to take into account the effects of cable strands over the anchor spans, arc-shaped saddle top, and tower top pre-uplift. In this paper, a method for calculating the cable configuration under final dead load over a main span, two side spans, and two anchor spans, coordinates of tangent points, and unstrained cable length are firstly developed using conditions for mechanical equilibrium and geometric relationships. Hanger tensile forces and unstrained hanger lengths are calculated by iteratively solving the equations governing hanger tensile forces and the cable configuration, which gives careful consideration to the effect of hanger weight. Next, equations for calculating the cable configuration in the unloaded state and pre-offsets of saddles are derived from the cable configuration under final dead load and the conditions for unstrained cable length to be conserved. The equations for the main span, two side spans and two anchor spans are then solved simultaneously. In the proposed methods, coupled nonlinear equations are solved by turning them into an unconstrained optimization problem, making the procedure simplified. The feasibility and validity of the proposed methods are demonstrated through a numerical example.

Ammonia Adsorption Characteristic of Reusable PAN/zeolite Fibers Made by Electrospinning (전기방사로 제작된 재이용 가능한 PAN/제올라이트 섬유의 암모니아 흡착 특성)

  • Ro, Yeon Hee;Chung, Woo Jin;Chang, Soon Woong
    • Korean Journal of Environmental Agriculture
    • /
    • v.39 no.4
    • /
    • pp.281-288
    • /
    • 2020
  • BACKGROUND: Generally, ammonia occurs from agricultural waste disposal. Ammonia is known as a harmful substance to the human body and has a bad influence such as eutrophication on the ecosystem. It is possible to remove the ammonia by ammonia adsorption method using natural zeolite, without external influence. However, due to the natural zeolite shape, it is hard to reuse. METHODS AND RESULTS: Electrospinning method can produce fiber with constant diameter. Moreover, electrospinning method has no limitation for selecting the material to make the fiber, and thus, it is valuable to reform the surface of adsorbent. In this study, reusable membrane was made by electrospinning method. The highest removal efficiency was shown from the membrane with 20% of zeolite included, and it has been verified that it is possible to reuse the membrane through chemical treatment. The highest ammonia removal efficiency was about 92.4%. CONCLUSION: In this study, ammonia adsorption characteristics of zeolite fibers were studied. Electrospinning method can produce zeolite fiber with even distribution. Ammonia can be removed efficiently from ion exchange ability of the natural zeolite. The result of adsorption isotherm indicated that both Freundlich model and Langmuir model provided the best fit for equilibrium data. And study on desorption has demonstrated that the ion exchange from zeolite was reversible when 0.01 M NaCl and KCl solution were used.

Study on the Split Hopkinson Pressure Bar Apparatus for Measuring High-strain Rate Tensile Properties of Plastic Material (플라스틱 소재의 고 변형률 인장특성 평가를 위한 홉킨스바(Split Hopkinson Pressure Bar) 측정 장비에 관한 연구)

  • Han, In-Soo;Lee, Se-Min;Kim, Kyu-Won;Kim, Hak-Sung
    • Composites Research
    • /
    • v.35 no.3
    • /
    • pp.196-200
    • /
    • 2022
  • Split Hopkinson Pressure Bar (SHPB) is a general test equipment for measuring the mechanical properties of high modulus metal and composite materials at high strain rate. However, for the soft plastic material, it is difficult to hold the specimen and achieve dynamic stress equilibrium due to the weak transmitted signals. In this study, SHPB test apparatus were designed to measure accurately the high strain rate stress-strain curve of the soft plastic materials by changing the incident bar materials and the shape of the specimen holder parts. In addition, to verify the high strain-rate tensile strain data obtained from SHPB, the strain distribution of the specimen was measured and analyzed with a high-speed camera and the digital image correlation (DIC), which was compared with the strain history measured from SHPB.

Isogeometric Analysis of FG-CNTRC Plate in Bending based on Higher-order Shear Deformation Theory (탄소 나노튜브 보강 기능경사복합재 판의 등기하 거동 해석)

  • Jeon, Juntai
    • Journal of the Society of Disaster Information
    • /
    • v.17 no.4
    • /
    • pp.839-847
    • /
    • 2021
  • Purpose: This study investigates mechanical behavior of functionally graded (FG) carbon nanotube-reinforced composite (CNTRC) plate in flexure. Isogeometric analysis (IGA) method coupled with shear deformable theory of higher-order (HSDT) to analyze the nonlinear bending response is presented. Method: Shear deformable plate theory into which a polynomial shear shape function and the von Karman type geometric nonlinearity are incorporated is used to derive the nonlinear equations of equilibrium for FG-CNTRC plate in bending. The modified Newton-Raphson iteration is adopted to solve the system equations. Result: The dispersion pattern of carbon nanotubes, plate geometric parameter and boundary condition have significant effects on the nonlinear flexural behavior of FG-CNTRC plate. Conclusion: The proposed IGA method coupled with the HSDT can successfully predict the flexural behavior of FG-CNTRC plate.

Phase Equilibrium Study on the Ternary System of SBR/EPDM/Solvent (SBR, EPDM 및 Solvent로 이루어진 삼성분계의 상 평형에 관한 연구)

  • Go, Jin-Hwan;Park, Byung-Ho
    • Elastomers and Composites
    • /
    • v.37 no.4
    • /
    • pp.211-216
    • /
    • 2002
  • The polymer-polymer interaction parameter, x 23t, of the styrene-butadiene polymer (SBR) and ethylene-propylene-diene terpolymer (EPDM) was investigated by observing the phase behavior of the ternary system of SBR/EPDM/solvent. The solvent used in this study was benzene acting as a good solvent for SBR but as a poor solvent for EPDM. Ternary solutions with various concentrations and mixing ratios of the two component polymers were separated into two phases by temperature change The cloud point curves (CPC) showed that the differerence of solvent affinities toward each polymer and the repulsive interaction between two polymers considerably affect the shape of CPC near 15℃. In the temperature range of 5℃ ~ 25℃, incompatible behaviours arised from both the difference of mixing ratios and concentration were clearly observed. Also the phase separation temperature greatly influenced on the composition of each separated phase. The calculated x 23t values from Flory-Huggins theory were in the range of 0.6301 ~ 1.0775, which suggest that the SBR/EPDM systems are incompatible.