• Title/Summary/Keyword: Equilibrium contact angle

Search Result 32, Processing Time 0.016 seconds

Internal Flow and Evaporation Characteristic inside a Water Droplet on a Vertical Vibrating Hydrophobic Surface (수직 진동하는 소수성 표면 위 액적의 내부유동 및 증발특성 연구)

  • Kim, Hun;Lim, Hee-Chang
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.7
    • /
    • pp.579-589
    • /
    • 2015
  • This study aims to understand the internal flow and the evaporation characteristics of a deionized water droplet subjected to vertical forced vibrations. To predict and evaluate its resonance frequency, the theories of Lamb, Strani, and Sabetta have been applied. To visualize the precise mode, shape, and internal flow inside a droplet, the experiment utilizes a combination of a high-speed camera, macro lens, and continuous laser. As a result, a water droplet on a hydrophobic surface has its typical shape at each mode, and complicated vortices are observed inside the droplet. In particular, large symmetrical flow streams are generated along the vertical axis at each mode, with a large circulating movement from the bottom to the top and then to the triple contact line along the droplet surface. In addition, a bifurcation-shaped flow pattern is formed at modes 2 and 4, whereas a large ellipsoid-shape flow pattern forms at modes 6 and 8. Mode 4 has the fastest internal flow speed and evaporation rate, followed by modes 8 then 6, with 2 having the slowest of these properties. Each mode has the fastest evaporation rate amongst its neighboring frequencies. Finally, the droplet evaporation under vertical vibration would lead to more rapid evaporation, particularly for mode 4.

The Difference of the Cleaning and Wettability-maintaining Efficacy of Lens Care Solution to RGP Lens (관리 용품에 따른 RGP 렌즈의 세척효과 및 습윤성 차이)

  • Kim, Myoung-Hea;Park, Mi-Jung
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.11 no.1
    • /
    • pp.27-34
    • /
    • 2006
  • We investigated the question whether the efficacy of cleaning tear components on RGP lens and preserving the superior wettability of RGP lens depended on the different type of contact lens care system - RGP lens care solution, SCL care solution, combined solution both for SCL and RGP lens or saline solution. The removal efficacy of the deposited protein was examined by Lowry protein assay and Scanning Electro Microscope(SEM) and residual lipid concentration on RGP lens was determined by High Pressure Liquid Chromatology(HPLC). Wettability was assessed with an equilibrium water-in-air contact angle method. When cared by RGP lens solution, it was demonstrated that 62 percent out of the adhered protein on RGP lens were removed and the removal efficacy of RGP lens solution was not only 4 times than saline solution and the alternative but also higher twice than SCL solution. Contrarily, the SCL solution had the most excellent removal efficacy of the adhered protein on SCL. These results suggest that the cleaning efficacy is thought to be affected by the other factors like the viscosity of care solutions, which mutual contact between RGP lens and care solutions is on the increase due to the viscosity enhancer in RGP lens care solution. RGP lens solution had the greatest removing efficacy to cholesterol and the residual cholesterol concentration was decreased to 50%. It is significant for RGP lens to preserve the superior wettability which means the predictive value for comfortable wearing and it showed that the RGP lens solution offered the most excellent efficacy to maintain the surface wettability. Combined solution both for SCL and RGP lens had weak efficacy of cleaning and maintaining wettability for RGP lens compared to RGP lens care solution.

  • PDF