• 제목/요약/키워드: Equilibrium calculations

검색결과 146건 처리시간 0.023초

실리콘 및 탄소 복합 열환원 반응을 이용한 페로실리크롬 합금철의 제조 (Production of Fe-Si-Cr Ferro Alloy by Using Mixed Silicothermic and Carbothermic Reduction)

  • 김종호;정은진;이고기;정우광;유선준;장영철
    • 한국재료학회지
    • /
    • 제27권5호
    • /
    • pp.263-269
    • /
    • 2017
  • Fe-Si-Cr ferroalloy is predominantly produced by carbothermic reduction. In this study, silicothermic and carbothermic mixed reduction of chromite ore to produce Fe-Si-Cr alloy is suggested. As reductants, silicon and silicon carbide are evaluated by thermochemical calculations, which prove that silicon carbide can be applied as a raw material. Considering the critical temperature of the change from the carbide to the metallic form of chromium, thereduction experiments were carried out. In these high temperature reactions, silicon and silicon carbide act as effective reductants to produce Fe-Si-Cr ferroalloy. However, at temperatures lower than the critical temperature, silicon carbide shows a slow reaction rate for reducing chromite ore. For the proper implementation of a commercial process that uses silicon carbide reductants, the operation temperature should be kept above the critical temperature. Using equilibrium calculations for chromite ore reduction with silicon and silicon carbide, the compositions of reacted metal and slag were successfully predicted. Therefore, the mass balance of the silicothermic and carbothermic mixed reduction of chromite ore can be proposed based on the calculations and the experimental results.

실험용 연소로에서 석탄 연소 시 발생하는 수은 배출특성 연구 (A Study on Emission Characteristics of Mercury from Coal Combustion at a Lab-scale Furnace)

  • 박규식;이주형;김정훈;이상협;서용칠
    • 한국대기환경학회지
    • /
    • 제24권2호
    • /
    • pp.238-248
    • /
    • 2008
  • This study investigated mercury emission at various combustion conditions and analyzed mercury species in flue gas from coal combustion at a laboratory scale furnace in coal. The results of this study can be used to predict and to assess mercury emission at coal boilers and power plants. The coal used in the plants generally contains about $0.02{\sim}0.28\;mg$ of mercury per kg. Bituminous and anthracite coal used for the experiment contained 0.049 and 0.297 mg/kg of mercury, respectively. Mercury emissions during coal combustion at temperatures range of $600^{\circ}C$ to $1,400^{\circ}C$ was measured and analysed using Ontario Hydro method; the speciation changes were also observed in mercury emissions. The results showed higher fraction of elemental mercury than that of oxidised mercury at most temperatures tested in this experiment. The fraction of elemental mercury was lower in combustion of anthracite coal than in bituminous combustion. As expected, equilibrium calculations and real power plants data showed good similarity. The distribution of particle size in flue gas had the higher peak in size above $2.5\;{\mu}m$. However the peak of mercury enrichment in dust was at $0.3\;{\mu}m$, which could be easily emitted into atmosphere without filtration in combustion system. When the CEA(Chemical equilibrium and Application) code was used for combustion equilibrium calculation, Cl was found to be the important component effecting mercury oxidation, especially at the lower temperatures under $900^{\circ}C$.

황 회수 공정 설계에서 부 반응의 영향 (The Impact of Side Reactions in Sulfur Recovery Unit Design)

  • 김성호;정원석;이희문;장근수
    • 플랜트 저널
    • /
    • 제13권3호
    • /
    • pp.36-46
    • /
    • 2017
  • 황회수 공정의 연소반응기 안에서는 평형반응 및 kinetic 반응이 동시에 일어난다. 주요 kinetic 반응에 참여하는 성분들은 수소($H_2$), 일산화탄소(CO), 카보닐황화물(COS) 그리고 이황화탄소($CS_2$) 이다. 본 연구에서는 평형반응, 상관관계식(empirical correlations) 그리고 황 회수 공정의 라이센서 자료의 비교를 통해 반응기에서 kinetic components (COS와 $CS_2$)의 생성 양을 분석한다. 또한 kinetic components ($H_2$ 와 CO)의 생성 양의 분석을 통해 반응기에서의 생성 양과 온도와의 상관관계를 분석한다. 부 반응이 전체 연소에 필요로 하는 산소의 양에 어떤 영향을 미치는지도 같이 분석을 한다. 황회수 공정의 반응기내의 부 반응에 대한 충분한 이해는 전체 황회수 공정 설계를 할 때 최적의 장치 설계를 가능하게 하고 나아가 황회수 효율을 극대화 하는데 도움이 된다.

  • PDF

Characterization of SiC/C Functionally Gradient Materials Growth Process by CVD Technique

  • Park, Chinho;Lee, Jinwook;Jung, Soon-Deuk;Yi, Sung-Chul;Kim, Yootaek
    • 한국결정성장학회:학술대회논문집
    • /
    • 한국결정성장학회 1997년도 Proceedings of the 12th KACG Technical Meeting and the 4th Korea-Japan EMGS (Electronic Materials Growth Symposium)
    • /
    • pp.7-11
    • /
    • 1997
  • SiC/C functionally gradient material (FGMs) were formed on graphite substrates by hot-wall chemical vapor deposition (CVD) technique using the SiCl$_4$-C$_3$H8-H$_2$ chemistry. Thermochemical equilibrium calculations were carried out to investigate the deposition process. The effect of process variables on the deposition yield and the SiC/C ratio in deposited layers was studied in detail. Calculated results showed a reasonable agreement with the experiment in a qualitative sense. SiC/C FGMs with excellent mechanical and thermal properties could be successfully formed on graphite substrates by carefully controlling the compositions in the deposited layers.

  • PDF

제어체적법에 의한 Ar 아크 플라즈마의 특성 계산 (Numerical calculations of characteristics of Argon arc plasma using the control volume method)

  • 김외동;고광철;강형부
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1995년도 하계학술대회 논문집 C
    • /
    • pp.1404-1406
    • /
    • 1995
  • In this paper, argon gas was used for numerical analysis of an arc in a cutting plasma torch driven by constant current. We established nozzle-constricting type torch domain and calculated steady state characteristics of argon arc plasma using the control volume method(CVM). For simplicity, we assumed that the flow field is laminar and the local thermodynamic equilibrium(LTE) prevails in all domain regions. We also neglected cathode-fall and anode-fall effects. Considering magnetic pinch effect and viscosity effect, we solved the momentum equation. Voltage drop in the arc column due to input current was calculated from the temperature field obtained by the energy balance equation.

  • PDF

Closed form solution for displacements of thick cylinders with varying thickness subjected to non-uniform internal pressure

  • Eipakchi, H.R.;Rahimi, G.H.;Esmaeilzadeh Khadem, S.
    • Structural Engineering and Mechanics
    • /
    • 제16권6호
    • /
    • pp.731-748
    • /
    • 2003
  • In this paper a thick cylindrical shell with varying thickness which is subjected to static non-uniform internal pressure is analyzed. At first, equilibrium equations of the shell have been derived by the energy principle and by considering the first order theory of Mirsky-Herrmann which includes transverse shear deformation. Then the governing equations which are, a system of differential equations with varying coefficients have been solved analytically with the boundary layer technique of the perturbation theory. In spite of complexity of modeling the conditions near the boundaries, the method of this paper is very capable of providing a closed form solution even near the boundaries. Displacement predictions are in a good agreement with the calculated finite elements and other analytical results. The convergence of solution is very fast and the amount of calculations is less than the Frobenius method.

Si(CH3)4로부터 SiC의 레이저 화학증착에 관한 연구 (Study of Laser Chemical Vapor Deposition of Silicon Carbide from Tetramethylsilane)

  • 이영림
    • 대한기계학회논문집B
    • /
    • 제26권9호
    • /
    • pp.1226-1233
    • /
    • 2002
  • The purpose of the present study was to examine some basic aspects of laser chemical vapor deposition that will be ultimately utilized for solid freeform fabrication of three dimensional objects. Specifically, deposition of silicon carbide (SiC) using tetramethylsilane (TMS) as precursor was studied for a rod grown by $CO_2$laser-assisted chemical vapor deposition. First, temperature distribution for substrate was analyzed to select proper substrate where temperature was high enough for SiC to be deposited. Then, calculations of chemical equilibrium and heat and mass flow with chemical reactions were performed to predict deposition rates, deposit profiles, and deposit components. Finally, several rods were experimentally grown with varying chamber pressure and compared with the theoretical results.

THE SMOOTHED PARTICLE HYDRODYNAMICS AND THE BINARY TREE COMBINED INTO BTSPH: PERFORMANCE TESTS

  • KIM W. -T.;HONG S. S.;YUN H. S.
    • 천문학회지
    • /
    • 제27권1호
    • /
    • pp.13-29
    • /
    • 1994
  • We have constructed a 3-dim hydrodynamics code called BTSPH. The fluid dynamics part of the code is based on the smoothed particle hydrodynamics (SPH), and for its Poisson solver the binary tree (BT) scheme is employed. We let the smoothing length in the SPH algorithm vary with space and time, so that resolution of the calculation is considerably enhanced over the version of SPH with fixed smoothing length. The binary tree scheme calculates the gravitational force at a point by collecting the monopole forces from neighboring particles and the multipole forces from aggregates of distant particles. The BTSPH is free from geometric constraints, does not rely on grids, and needs arrays of moderate size. With the code we have run the following set of test calculations: one-dim shock tube, adiabatic collapse of an isothermal cloud, small oscillation of an equilibrium polytrope of index 3/2, and tidal encounter of the polytrope and a point mass perturber. Results of the tests confirmed the code performance.

  • PDF

고압상태에서의 연료액적의 증발특성 해석 (Analysis of Fuel Droplet Vaporization at High-Pressure Environment)

  • 이재철;김용모
    • 한국분무공학회지
    • /
    • 제1권1호
    • /
    • pp.35-43
    • /
    • 1996
  • A vaporization model for single component fuel droplet has been developed for applying to sub- and supercritical conditions. This model can account for transient liquid heat ins and circulation effect inside the droplet, forced and natural convection, Stefan flow effect, real gas effect and ambient gas solubility into the liquid droplet in high-pressure conditions. Thermodynamic and transport properties are calculated as functions of temperature and pressure in both phases. Numerical calculations are carried out for several validation cases with the detailed experimental data. Numerical results confirm that this supercritical vaporization model is applicable to the high-pressure conditions encountered in the combustion processes of diesel engine.

  • PDF

태양대기모델 계산법 (CALCULATION METHODS OF SOLAR ATMOSPHERIC MODEL)

  • 김갑성
    • 천문학논총
    • /
    • 제15권spc2호
    • /
    • pp.65-71
    • /
    • 2000
  • We have investigated the numerical methods to calculate model atmosphere for the analysis of spectral lines emitted from the sun and stars. Basic equations used in our calculations are radiative transfer, statistical equilibrium and charge-particle conservations. Transfer equation has been solved to get emitting spectral line profile as an initial value problem using Adams-Bashforth-Moulton method with accuracy as high as 12th order. And we have calculated above non linear differential equations simultaneously as a boundary value problem by finite difference method of 3 points approximation through Feautrier elimination scheme. It is found that all computing programs coded by above numerical methods work successfully for our model atmosphere.

  • PDF