• Title/Summary/Keyword: Equilibrium Flow

Search Result 553, Processing Time 0.022 seconds

Chemical Equilbrium Analysis of the $30\;ton_f$ - class KARI LRE Nozzle Flow (KARI 30톤급 액체 로켓 엔진 노즐 유동 화학 평형 해석)

  • Lee, Dae-Sung;Kang, Ki-Ha;Cho, D.R.;Choi, Jeong-Yeol;Choi, H.S.
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.12 no.3
    • /
    • pp.9-15
    • /
    • 2008
  • Nozzle flow analyses of $30\;ton_f$-class KARI liquid rocket engine for high altitude propulsion are carried out using a chemically frozen and equilibrium flow analysis code developed previously. It is considered that the combined frozen- and shifting- equilibrium analysis is cost-effective regarding the convergence characteristics and modeling uncertainties, though the non-equilibrium analysis is most reliable approach. A dependable performance prediction could be attainable through the present analyses that account for the recombination process and thermal and kinetic energy recovery during the expansion process with viscous effects.

Analysis of Contaminants in a $CH_4-O_2$ Vitiated Air Heater ($CH_4-O_2$ Vitiated 공기가열기에서의 오염도 분석)

  • Na, Jae-Jeong;Lee, Jung-Min;Lim, Jin-Shik
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.447-450
    • /
    • 2010
  • This study was conducted to explore the flow contamination in the $CH_4-O_2$ vitiated air heater. Non-equilibrium and equilibrium calculation were made of the flow processes in the heater and nozzle assuming the inviscid and one dimensional flow. The results were compared with the measurement data. The overall results of this study showed additional non-equilibrium calculation should be considered to assess the presence of NO, which species could yield the combustion delay or no reaction, as a contaminant.

  • PDF

Finite Volume Analysis of a Supersonic Non-Equilibrium Flow Around an Axisymmetric Blunt Body

  • Haoui, R.
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.11 no.2
    • /
    • pp.59-68
    • /
    • 2010
  • The aim of this work is to analyze high temperature flows around an axisymmetric blunt body taking into account chemical and vibrational non-equilibrium state for air mixture species. For this purpose, a finite volume methodology is employed to determine the supersonic flow parameters around the axisymmetric blunt body. This allows the capture of a shock wave before a blunt body placed in supersonic free stream. The numerical technique uses the flux vector splitting method of Van Leer. Here, adequate time stepping parameters, along with Courant, Friedrich, Lewis coefficient and mesh size level are selected to ensure numerical convergence, sought with an order of $10^{-8}$.

A Numerical Analysis of High Speed Flow over Blunt Body Using Upwind Navier-Stokes Method (Upwind Navier-Stokes 방정식을 이용한 무딘 물체 주위의 유동장 해석)

  • Kwon C. O.;Kim S. D.;Song D. J.
    • Journal of computational fluids engineering
    • /
    • v.1 no.1
    • /
    • pp.123-141
    • /
    • 1996
  • In this paper the upwind flux difference splitting Navier-Stokes method has been applied to study the perfect gas and the equilibrium chemically reacting hypersonic flow over an axisymmetric sphere-cone(5°) geometry. The effective gamma(γ), enthalpy to internal energy ratio was used to couple chemistry with the fluid mechanics for equilibrium chemically reacting air. The test case condition was at altitude(30km) and Mach number(15). The equilibrium shock thickness over the blunt body region was much thinner than that of perfect gas shock. The pressure difference between perfect gas and equilibrium gas was about 3 ∼ 5 percent. The heat transfer coefficient were also calculated. The results were compared with VSL results in order to validate the current numerical analysis. The results from current method were compared well VSL results ; however, not well at near nose. The proper boundary condition and grid system will be studied to improve the solution quality.

  • PDF

A Numerical Analysis of High Speed Flow over Blunt Body Using Upwind Navier-Stokes Method (Upwind Navier-Stokes 방정식을 이용한 무딘 물체 주위의 유동장 해석)

  • Gwon Chang-O;Kim Sang-Deok;Song Dong-Ju
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.203-212
    • /
    • 1995
  • In this paper the upwind flux difference splitting Navier-Stokes method has been applied to study the perfect gas and the equilibrium chemically reacting hypersonic flow over an axisymmetric sphere-cone($5^{\circ}$) geometry. The effective gamma($\bar{r}$), enthalpy to internal energy ratio was used to couple chemistry with the fluid mechanics for equilibrium chemically reacting air. The test case condition was at altitude(30Km) and Mach number(15). The equilibrium shock thickness over the blunt body region was much thinner than that of perfect gas shock. The pressure difference between perfect gas and equilibrium gas was about $3\sim5$ percent. The skin friction coefficient and heat transfer coefficient were also calculated.

  • PDF

An Investigation on Local Thermodynamic Equilibrium Assumption of Natural Convection in a Porous Medium (다공성 물질 안에서의 자연대류 현상에 대한 열역학적 국소평형상태 가정의 고찰)

  • Kim, In-Seon;Nam, Jin-Hyun;Kim, Charn-Jung
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.112-117
    • /
    • 2000
  • A numerical study on natural convection in a vertical square cavity filled with a porous medium is carried out with Brinkman-Forchheimer-extended Darcy flow model, and the validity of local thermodynamic equilibrium assumption is studied. The local thermodynamic equilibrium refers to the state in which a single temperature can be used to describe a heat transfer process in a multiphase system. With this assumption, the analysis is greatly simplified because only one equation is needed to describe the heat transfer process. But prior to using this assumption, it is necessary to know in what conditions the assumption can be used. The numerical results of this study reveal that large temperature difference between fluid phase and solid phase exists near wall region, paticularily when the convection becomes dominant over conduction. And the influence of flow parameters such as fluid Rayleigh number, fluid Prandtl number, dimensionless particle diameter and conductivity ratio are investigated.

  • PDF

PASSlVE SHOCK CONTROL IN TRANSONIC FLOW FIELD

  • Matsuo S;Tanaka M;Setoguchi T;Kashimura H;Yasunobu T;Kim H.D
    • Journal of computational fluids engineering
    • /
    • v.10 no.1
    • /
    • pp.80-86
    • /
    • 2005
  • In order to control the transonic flow field with a shock wave, a condensing flow was produced by an expansion of moist air on a circular bump model and shock waves were occurred in the supersonic parts of the fields. Furthermore, the additional passive technique of shock-boundary layer interaction using the porous wall with a cavity underneath was adopted in this flow field. The effects of these methods on the shock wave characteristics were investigated numerically. The result showed that the flow fields might be effectively controlled by the suitable combination between non-equilibrium condensation and the position of porous wall.

Passive Shock Control in Transonic Flow Field

  • Matsuo S.;Tanaka M.;Setoguchi T.;Kashimura H.;Yasunobu T.;Kim H. D.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.187-188
    • /
    • 2003
  • In order to control the transonic flow field with shock wave, a condensing flow was produced by an expansion of moist air on a circular bump model and shock waves were occurred in the supersonic parts of the fields. Furthermore, the additional passive technique of shock - boundary layer interaction using the porous wall with a cavity underneath was adopted in this flow field. The effects of these methods on the shock wave characteristics were investigated numerically. The result showed that the flow fields might be effectively controlled by the suitable combination between non-equilibrium condensation and the position of porous wall.

  • PDF

AN EXPERIMENTAL STUDY ON POST-CHF HEAT TRANSFER FOR LOW FLOW OF WATER IN A $3\times3$ ROD BUNDLE

  • MOON SANG-KI;CHUN SE-YOUNG;CHO SEOK;KIM SE-YUN;BAEK WON-PIL
    • Nuclear Engineering and Technology
    • /
    • v.37 no.5
    • /
    • pp.457-468
    • /
    • 2005
  • An experimental study on post-CHF heat transfer has been performed with a $3\times3$ rod bundle using a vertical steam-water two-phase flow at low flow conditions. The effects of various parameters on the post-CHF heat transfer are investigated and the reasons for the parametric effects are discussed. As the heat transfer regime changes from CHF to post-CHF, the radial wall temperature distribution is changed depending on the pressure and the mass flux conditions. The superheat of the fluid increases considerably with an increase of the wall temperature (or heat flux) and with a decrease of the mass flux. This implies, indirectly, a strong thermal non-equilibrium at high wall temperature and low mass flux conditions. In order to improve the prediction accuracy of the existing post-CHF correlations, it is necessary to perform more experiments, particularly direct measurement of the vapor superheat, and to modify the correlation by considering a strong thermal non-equilibrium at low flow and low pressure conditions.

Flow Characteristics of Neutrally Buoyant Particles in 2-Dimensional Poiseuille Flow through Circular Capillaries

  • Kim, Young-Won;Jin, Song-Wan;Yoo, Jung-Yul
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2006.12a
    • /
    • pp.7-10
    • /
    • 2006
  • An experimental study has been conducted to quantitatively characterize the motion of neutrally buoyant particles in 2-dimensional Poiseuille flow through the micron-sized circular capillaries in the range of Re (Reynolds number) $\approx0.1\sim100$. $A{\mu}-PTV$ (Particle Tracking Velocimetry) system is adopted, which consists of a double-headed Nd:YAG laser, an epi-fluorescence microscope and a cooled CCD camera. Since high shear rate can be induced due to the scale effect even at low Re, it is shown that in micro scale neutrally buoyant particles in Poiseuille flow drift away from the wall and away from the center of the capillary. Consequently, particles accumulate at the equilibrium position of $0.52\sim0.64R$ with R being the radius of the capillary, which is analogous to that of tube flow in macro scale. There is a plateau in equilibrium position at small Re, while equilibrium position starts increasing at $Re\approx30$. The outermost edge of particle cluster is closer to the center of the capillary than that in previous studies due to low Re effect. The present study quantitatively presents characteristics of particle motion in circular capillaries. Furthermore, it is expected to give optimum factors for designing microfluidic systems that are to be used fur plasma separation from the blood.

  • PDF