Browse > Article

AN EXPERIMENTAL STUDY ON POST-CHF HEAT TRANSFER FOR LOW FLOW OF WATER IN A $3\times3$ ROD BUNDLE  

MOON SANG-KI (Korea Atomic Energy Research Institute)
CHUN SE-YOUNG (Korea Atomic Energy Research Institute)
CHO SEOK (Korea Atomic Energy Research Institute)
KIM SE-YUN (Korea Atomic Energy Research Institute)
BAEK WON-PIL (Korea Atomic Energy Research Institute)
Publication Information
Nuclear Engineering and Technology / v.37, no.5, 2005 , pp. 457-468 More about this Journal
Abstract
An experimental study on post-CHF heat transfer has been performed with a $3\times3$ rod bundle using a vertical steam-water two-phase flow at low flow conditions. The effects of various parameters on the post-CHF heat transfer are investigated and the reasons for the parametric effects are discussed. As the heat transfer regime changes from CHF to post-CHF, the radial wall temperature distribution is changed depending on the pressure and the mass flux conditions. The superheat of the fluid increases considerably with an increase of the wall temperature (or heat flux) and with a decrease of the mass flux. This implies, indirectly, a strong thermal non-equilibrium at high wall temperature and low mass flux conditions. In order to improve the prediction accuracy of the existing post-CHF correlations, it is necessary to perform more experiments, particularly direct measurement of the vapor superheat, and to modify the correlation by considering a strong thermal non-equilibrium at low flow and low pressure conditions.
Keywords
Post-CHF Heat Transfer; Low Flow of Water; Thermal Non-Equilibrium; Rod Bundle;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 C. Unal, K. Tuzla, A. F. Cokmez-Tuzla and J. C. Chen, 'Vapor Generation Rate Model for Dispersed Drop Flow,' Nucl. Eng. Design, 125, 161 (1991)   DOI   ScienceOn
2 S. Y. Chun, S. K. Moon, H. J. Chung, M. K. Chung and M. Aritomi, 'An Experimental Study on Heat Transfer Characteristics Just Before Critical Heat Flux in Uniformly Heated Vertical Annulus Under a Wide Range of Pressures,' J. of the Korean Nuclear Society, 34[4], 269 (2002)   과학기술학회마을
3 C. Unal, K. Tuzla, J. C. Chen, S. Neti and O. Badr, 'Convective Film Boiling in a Rod Bundle: Axial Variation of Nonequilibrium Evaporation Rates,' Int. J. Heat Mass Transfer, 31[10], 2091 (1988)   DOI   ScienceOn
4 D. C. Groeneveld and S. R. M Gardiner, 'A Method of Obtaining Flow Film Boiling Data for Subcooled Water,' Int. J. Heat Mass Transfer, 21, 17 (1978)   DOI   ScienceOn
5 A. F. Varone and W. M. Rohsenow, 'Post Dryout Heat Transfer Prediction,' Proc. of the Joint Japan-USA Two-Phase Flow Conf., Lake Placid, New York, USA, Aug. (1984)
6 D. C. Groeneveld, 'Post-Dryout Heat Transfer at Reactor Operating Conditions,' AECL-3281, Atomic Energy of Canada Limited (1973)
7 H. Kumamaru, Y. Koizumi and K. Tasaka, 'Investigation of Pre- and Post-Dryout Heat Transfer of Steam-Water Two-Phase Flow in a Rod Bundle,' Nucl. Eng. Design, 102, 71 (1987)   DOI   ScienceOn
8 M. Akiyama, A. Inoue, M. Ohishi et al., 'Study on Post-BT Heat Transfer in a Full Scale BWR (8x8) Rod Bundle,' Nucl. Eng. Design, 117, 341 (1989)   DOI   ScienceOn
9 Y. Koizumi, H. Kumamaru, T. Yonomoto and K. Tasaka, 'Post-Dryout Heat Transfer of High-Pressure Steam-Water Two-Phase Flow in Single Rod Channel and Multi Rod Bundle,' Nucl. Eng. Design, 99, 157 (1987)   DOI   ScienceOn
10 D. C. Groeneveld, 'Post-Dryout Heat Transfer: Physical Mechanisms and a Survey of Prediction Methods,' Nucl. Eng. Design, 32, 283 (1975)   DOI   ScienceOn
11 ANSI/ASME PTC 19.1, ASME Performance Test Codes, Supplement on Instruments and Apparatus, Part 1, Measurement Uncertainty, ASME, New York (1985)
12 J. C. Chen, 'A Short Review of Dispersed Flow Heat Transfer in Post-Dryout Boiling,' Nucl. Eng. Design, 95, 375 (1986)   DOI   ScienceOn
13 G. F. Hewitt, J. M. Delhaye and N. Zuber, Post Dryout Heat Transfer, CRC Press, Inc., Boca Raton, Florida (1992)
14 D. C. Groeneveld, L. K. H. Leung et al., 'A Look-Up Table for Fully Developed Film-Boiling Heat Transfer,' Nucl. Eng. Design, 225, 83 (2003)   DOI   ScienceOn
15 D. C. Groeneveld and G. G. J. Delorme, 'Prediction of Thermal Non-Equilibrium in the Post-Dryout Regime,' Nucl. Eng. Design, 36, 17 (1976)   DOI   ScienceOn
16 S. Nijhawan, J. C. Chen, R. K. Sundaram and E. J. London, 'Measurement of Vapor Superheat in Post-Critical-Heat-Flux Boiling,' Journal of Heat Transfer, 102, 465 (1980)   DOI
17 R. S. Dougall and W. M. Rohsenow, 'Film Boiling on the Inside of Vertical Tubes with Upward Flow of the Fluid at Low Qualities,' MIT Report No. 9079-26, Massachusetts Institute of Technology (1963)
18 K. G. Condie, S. J. Bengston and S. L. Richlein, 'Measurement of Axially Varying Nonequilibrium in Post-Critical-Heat-Flux Boiling in a Vertical Tube,' NUREG/CR-3362, U.S. Nuclear Regulatory Commission (1983)
19 D. Evans, S. W. Webb and J. C. Chen, 'Axially Varying Vapor Superheats in Convective Film Boiling,' Journal of Heat Transfer, 107, 663 (1985)   DOI
20 S. K. Moon, S. Y. Chun, S. Cho, J. K. Park and W. P. Baek, 'An Experimental Study on the Low Flow CHF in Vertical Rod Bundle with Non-Uniform Axial Heat Flux Distribution,' Proc. of the 10th Int. Topical Meeting on Nuclear Thermal Hydraulics (NURETH-10), Seoul, Korea, Oct. 5-11 (2003)
21 H. C. Hottel and A. F. Sarofim, Radiative Transfer, McGraw-Hill, New York (1967)