• Title/Summary/Keyword: Equation of Time

Search Result 4,795, Processing Time 0.034 seconds

TIME FRACTIONAL ADVECTION-DISPERSION EQUATION

  • Liu, F.;Anh, V.V.;Turner, I.;Zhuang, P.
    • Journal of applied mathematics & informatics
    • /
    • v.13 no.1_2
    • /
    • pp.233-245
    • /
    • 2003
  • A time fractional advection-dispersion equation is Obtained from the standard advection-dispersion equation by replacing the firstorder derivative in time by a fractional derivative in time of order ${\alpha}$(0 < ${\alpha}$ $\leq$ 1). Using variable transformation, Mellin and Laplace transforms, and properties of H-functions, we derive the complete solution of this time fractional advection-dispersion equation.

A Boundary Integral Equation Formulation for an Unsteady Anisotropic-Diffusion Convection Equation of Exponentially Variable Coefficients and Compressible Flow

  • Azis, Mohammad Ivan
    • Kyungpook Mathematical Journal
    • /
    • v.62 no.3
    • /
    • pp.557-581
    • /
    • 2022
  • The anisotropic-diffusion convection equation with exponentially variable coefficients is discussed in this paper. Numerical solutions are found using a combined Laplace transform and boundary element method. The variable coefficients equation is usually used to model problems of functionally graded media. First the variable coefficients equation is transformed to a constant coefficients equation. The constant coefficients equation is then Laplace-transformed so that the time variable vanishes. The Laplace-transformed equation is consequently written as a boundary integral equation which involves a time-free fundamental solution. The boundary integral equation is therefore employed to find numerical solutions using a standard boundary element method. Finally the results obtained are inversely transformed numerically using the Stehfest formula to get solutions in the time variable. The combined Laplace transform and boundary element method are easy to implement and accurate for solving unsteady problems of anisotropic exponentially graded media governed by the diffusion convection equation.

Derivation of Acoustic Target Strength Equation Considering Pulse Type of Acoustic Signal (펄스 타입의 음향신호를 고려한 음향표적강도 이론식 개발)

  • Kim, Ki-June;Hong, Suk-Yoon;Kwon, Hyun-Wung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.812-819
    • /
    • 2007
  • Acoustic Target Strength (TS) is a major parameter of the active sonar equation, which indicates the ratio of the radiated intensity from the source to the re-radiated intensity by a target. This research provides the time pattern of TS in time domain, which is applicable to pulse modulated acoustic pressure field. If the time pattern of TS is predicted by using TS equation in frequency domain, it takes long time and difficult since time function pulsed acoustic wave may be decomposed into their frequency domain components. But TS equation in time domain has a convenience. If the expression for pulsed acoustic field has been obtained, the problem can be solved. Furthermore this paper introduces about mathematical equivalence quantities between EM wave and Acoustic Wave.

  • PDF

State Equation Formulation of Nonlinear Time-Varying RLC Network by the Method of Element Decomposition (회전소자분해법에 의한 비선형시변 RLC 회로망의 상태방정식 구성에 대하여)

  • 양흥석;차균현
    • 전기의세계
    • /
    • v.22 no.2
    • /
    • pp.40-44
    • /
    • 1973
  • A method for obtaining state equation for nonlinear time-varying RLC networks is presented. The nonlinear time-varying RLC elements are decomposed by using Murata method to formulate nonlinear state equation. A nonlinear time-varying RLC network containing twin tunnel diode is solved as an example. In consequence of solving the examjple, simple methods are presented for revising the original network model so that the formulation of state equation is simplified.

  • PDF

Transient Response of Magnetic Field Integral Equation Using Laguerre Polynomials as Temporal Expansion Functions (라겐르 함수를 시간영역 전개함수로 이용한 자장 적분방정식의 과도 응답)

  • 정백호;정용식
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.52 no.4
    • /
    • pp.185-191
    • /
    • 2003
  • In this Paper, we propose an accurate and stable solution of the transient electromagnetic response from three-dimensional arbitrarily shaped conducting objects by using a time domain magnetic field integral equation. This method does not utilize the conventional marching-on in time (MOT) solution. Instead we solve the time domain integral equation by expressing the transient behavior of the induced current in terms of temporal expansion functions with decaying exponential functions and Laguerre·polynomials. Since these temporal expansion functions converge to zero as time progresses, the transient response of the induced current does not have a late time oscillation and converges to zero unconditionally. To show the validity of the proposed method, we solve a time domain magnetic field integral equation for three closed conducting objects and compare the results of Mie solution and the inverse discrete Fourier transform (IDFT) of the solution obtained in the frequency domain.

THE SPACE-TIME FRACTIONAL DIFFUSION EQUATION WITH CAPUTO DERIVATIVES

  • HUANG F.;LIU F.
    • Journal of applied mathematics & informatics
    • /
    • v.19 no.1_2
    • /
    • pp.179-190
    • /
    • 2005
  • We deal with the Cauchy problem for the space-time fractional diffusion equation, which is obtained from standard diffusion equation by replacing the second-order space derivative with a Caputo (or Riemann-Liouville) derivative of order ${\beta}{\in}$ (0, 2] and the first-order time derivative with Caputo derivative of order ${\beta}{\in}$ (0, 1]. The fundamental solution (Green function) for the Cauchy problem is investigated with respect to its scaling and similarity properties, starting from its Fourier-Laplace representation. We derive explicit expression of the Green function. The Green function also can be interpreted as a spatial probability density function evolving in time. We further explain the similarity property by discussing the scale-invariance of the space-time fractional diffusion equation.

Analytical Solutions of Unsteady Reaction-Diffusion Equation with Time-Dependent Boundary Conditions for Porous Particles

  • Cho, Young-Sang
    • Korean Chemical Engineering Research
    • /
    • v.57 no.5
    • /
    • pp.652-665
    • /
    • 2019
  • Analytical solutions of the reactant concentration inside porous spherical catalytic particles were obtained from unsteady reaction-diffusion equation by applying eigenfunction expansion method. Various surface concentrations as exponentially decaying or oscillating function were considered as boundary conditions to solve the unsteady partial differential equation as a function of radial distance and time. Dirac delta function was also used for the instantaneous injection of the reactant as the surface boundary condition to calculate average reactant concentration inside the particles as a function of time by Laplace transform. Besides spherical morphology, other geometries of particles, such as cylinder or slab, were considered to obtain the solution of the reaction-diffusion equation, and the results were compared with the solution in spherical coordinate. The concentration inside the particles based on calculation was compared with the bulk concentration of the reactant molecules measured by photocatalytic decomposition as a function of time.

Implementation and Experiments of Sparse Matrix Data Structure for Heat Conduction Equations

  • Kim, Jae-Gu;Lee, Ju-Hee;Park, Geun-Duk
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.12
    • /
    • pp.67-74
    • /
    • 2015
  • The heat conduction equation, a type of a Poisson equation which can be applied in various areas of engineering is calculating its value with the iteration method in general. The equation which had difference discretization of the heat conduction equation is the simultaneous equation, and each line has the characteristic of expressing in sparse matrix of the equivalent number of none-zero elements with neighboring grids. In this paper, we propose a data structure for sparse matrix that can calculate the value faster with less memory use calculate the heat conduction equation. To verify whether the proposed data structure efficiently calculates the value compared to the other sparse matrix representations, we apply the representative iteration method, CG (Conjugate Gradient), and presents experiment results of time consumed to get values, calculation time of each step and relevant time consumption ratio, and memory usage amount. The results of this experiment could be used to estimate main elements of calculating the value of the general heat conduction equation, such as time consumed, the memory usage amount.

THE FUNDAMENTAL SOLUTION OF THE SPACE-TIME FRACTIONAL ADVECTION-DISPERSION EQUATION

  • HUANG F.;LIU F.
    • Journal of applied mathematics & informatics
    • /
    • v.18 no.1_2
    • /
    • pp.339-350
    • /
    • 2005
  • A space-time fractional advection-dispersion equation (ADE) is a generalization of the classical ADE in which the first-order time derivative is replaced with Caputo derivative of order $\alpha{\in}(0,1]$, and the second-order space derivative is replaced with a Riesz-Feller derivative of order $\beta{\in}0,2]$. We derive the solution of its Cauchy problem in terms of the Green functions and the representations of the Green function by applying its Fourier-Laplace transforms. The Green function also can be interpreted as a spatial probability density function (pdf) evolving in time. We do the same on another kind of space-time fractional advection-dispersion equation whose space and time derivatives both replacing with Caputo derivatives.

FRACTIONAL GREEN FUNCTION FOR LINEAR TIME-FRACTIONAL INHOMOGENEOUS PARTIAL DIFFERENTIAL EQUATIONS IN FLUID MECHANICS

  • Momani, Shaher;Odibat, Zaid M.
    • Journal of applied mathematics & informatics
    • /
    • v.24 no.1_2
    • /
    • pp.167-178
    • /
    • 2007
  • This paper deals with the solutions of linear inhomogeneous time-fractional partial differential equations in applied mathematics and fluid mechanics. The fractional derivatives are described in the Caputo sense. The fractional Green function method is used to obtain solutions for time-fractional wave equation, linearized time-fractional Burgers equation, and linear time-fractional KdV equation. The new approach introduces a promising tool for solving fractional partial differential equations.