• Title/Summary/Keyword: Epoxy resin reinforced glass fiber composites

Search Result 27, Processing Time 0.031 seconds

Effect of Additive-added Epoxy on Mechanical and Dielectric Characteristics of Glass Fiber Reinforced Epoxy Composites (유리섬유강화 에폭시 레진 복합체의 기계적, 유전체 특성에 미치는 첨가제 함유 에폭시 영향)

  • Vu, Cuong Manh;Nguyen, Liem Thanh;Nguyen, Thai Viet;Choi, Hyoung Jin
    • Polymer(Korea)
    • /
    • v.38 no.6
    • /
    • pp.726-734
    • /
    • 2014
  • Three different types of additives, thiokol, epoxidized natural rubber (ENR) and epoxidized linseed oil (ELO), were dispersed in an epoxy matrix before being used in glass fiber (GF) composites, and their effects on the mechanical and dielectric properties of epoxy resin and glass fiber reinforced epoxy composites (GF/EP) were examined. The addition of each of 7 phr ENR, 9 phr ELO and 5 phr thiokol into the epoxy resin increased the fracture toughness significantly by 56.9, 43.1, and 80.0%, respectively, compared to the unmodified resin. The mode I interlaminar fracture toughness of the GF/EP at propagation was also improved by 26.9, 18.3 and 32.7% when each of 7 phr ENR, 9 phr ELO, and 5 phr thiokol, respectively, was dispersed in the epoxy matrix. Scanning electron microscopy showed that the additives reduced crack growth in the GF/EP, whereas their dielectric measurements showed that all these additives had no additional effect on the real permittivity and loss factor of the GF/EP.

Prediction of Deterioration Rate for Composite Material by Moisture Absorption

  • Kim, Yun-Hae;An, Seung-Jun;Jo, Young-Dae;Bae, Chang-Won;Moon, Kyung-Man
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.2
    • /
    • pp.296-302
    • /
    • 2010
  • If the fiber reinforced plastic is exposed to the moisture for a long period of time, most of moisture absorption occurs on the resin place, thus dropping cohesiveness between the molecules as the water molecules permeated between high molecular chains grant high molecular mobility and flexibility. Also as the micro crack occurs due to the permeation of moisture on the interface of glass fiber and epoxy resin, it is developed to the overall damage of interface place. Hence, the study on absorption is essential as the mechanical and physical properties of fiber reinforced composites are reduced. However, the study on absorption has the inconvenience needing to expose composite materials to fresh water or seawater for 1 month or up to 1 year. Therefore, this study has exposed fiber reinforced composites to fresh water and has developed a model with an accuracy of 98% after comparing the analysis value obtained by using ANSYS while basing on the experimental value of property decline by absorption and the basic properties of glass fiber and epoxy resin used in the experiment.

Change of Interfacial properties by the Fiber Degradation in the Fiber Reinforced Composites (섬유강화 복합재료에서 섬유열화에 따른 계면특성의 변화)

  • Moon, Chang-Kwon;Kim, Young-Dae;Roh, Tae-Young
    • Journal of Ocean Engineering and Technology
    • /
    • v.12 no.3 s.29
    • /
    • pp.31-41
    • /
    • 1998
  • Single fiber fragmentation technique was used to evaluate the change of interfacial properties by degradation of fiber tensile strength in the fiber reinforced composites. The influences of fiber tensile strength on the interfacial properties have been evaluated by the fragmentation specimens(weak fiber samples) of glass fiber/epoxy resin that was made using the pre-degraded glass fiber in distilled water at $80^{circ}C$ for specified periods. The effects of the immersion time on the interfacial properties in the distilled water at $80^{circ}C$ also have been evaluated by the fragmentation specimens(original fiber samples) of glass fiber/epoxy resin that was made using the received glass fiber. As the result, the tensile strength of glass fiber was decreased with the increasing of the treatment time in the distilled water at $80^{circ}C$ and the interfacial shear strength was independent of the change of the glass fiber strength in the single fiber fragmentation test. But in the durability test using the single fiber fragmentation specimen, interfacial shear strength decreased with the increasing of the immersion time in distilled water ar $80^{circ}C$. And it turned out that the evaluating of interfacial shear strength using original fiber tensile strength was valuable in the durability test for the water environment by the single fiber fragmentation technique.

  • PDF

Constitutive Equations for Three Dimensional Circular Braided Glass Fiber Reinforced Composites Using Cell Modeling Method (셀 방법을 이용한 3차원 원형 브레이드 유리 섬유 강화 복합 재료의 구성 방정식)

  • 이원오;정관수
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.10a
    • /
    • pp.71-74
    • /
    • 2003
  • The cell modeling homogenization method to derive the constitutive equation considering the microstructures of the fiber reinforced composites has been previously developed for composites with simple microstructures such as 2D plane composites and 3D rectangular shaped composites. Here, the method has been further extended for 3D circular braided composites, utilizing B-spline curves to properly describe the more complex geometry of 3D braided composites. For verification purposes, the method has been applied for orthotropic elastic properties of the 3D circular braided glass fiber reinforced composite, in particular for the tensile property. Prepregs of the specimen have been fabricated using the 3D braiding machine through RTM (resin transfer molding) with epoxy as a matrix. Experimentally measured uniaxial tensile properties agreed well with predicted values obtained fer two volume fractions.

  • PDF

Constitutive Equations Based on Cell Modeling Method for 3D Circular Braided Glass Fiber Reinforced Composites

  • Lee, Wonoh;Kim, Ji Hoon;Shin, Heon-Jung;Chung, Kwansoo;Kang, Tae Jin;Youn, Jae Ryoun
    • Fibers and Polymers
    • /
    • v.4 no.2
    • /
    • pp.77-83
    • /
    • 2003
  • The cell modeling homogenization method to derive the constitutive equation considering the microstructures of the fiber reinforced composites has been previously developed for composites with simple microstructures such as 2D plane composites and 3D rectangular shaped composites. Here, the method has been further extended for 3D circular braided com-posites, utilizing B-spline curves to properly describe the more complex geometry of 3D braided composites. For verification purposes, the method has been applied for orthotropic elastic properties of the 3D circular braided glass fiber reinforced com-posite, in particular for the tensile property. Prepregs of the specimen have been fabricated using the 3D braiding machine through RTM (resin transfer molding) with epoxy as a matrix. Experimentally measured uniaxial tensile properties agreed well with predicted values obtained for two volume fractions.

Evaluation of Wettability and Interfacial Property of Glass Fiber Reinforced Composite with Different Glass Fiber Conditions via Capillary Effect (Capillary 특성을 활용한 섬유 조건에 따른 유리섬유강화 복합재료의 함침성 및 계면강도 평가)

  • Kim, Jong-Hyun;Kwon, Dong-Jun;Park, Joung-Man
    • Composites Research
    • /
    • v.34 no.5
    • /
    • pp.305-310
    • /
    • 2021
  • Mechanical properties of fiber reinforced composites were affected to fiber volume fractions (FVF) and interfacial property by sizing agent conditions. An optimum interface can relieve stress concentration by transferring the mechanical stress from the matrix resin to the reinforcements effectively, and thus can result in the performance of the composites. The interfacial properties and wettability between the epoxy resin and glass fiber (GF) were evaluated for different sizing agent conditions and FVFs. The surface energies of epoxy resin and different sizing agent treated GFs were calculated using dynamic and static contact angle measurements. The work of adhesion, Wa was calculated by using surface energies of epoxy matrix and GFs. The wettability was evaluated via the GF tow capillary test. The interfacial shear strength (IFSS) was evaluated by microdroplet pull-out test. Finally, the optimized GFRP manufacturing conditions could be obtained by using wettability and interfacial property.

Mechanical Properties of Jute Fiber Reinforced Thermosetting Composites (황마섬유 보강 열경화성 복합재료의 기계적 특성)

  • Lee, C.H.;Song, J.E.;Nam, W.S.;Byun, J.H.;Kim, B.S.;Hwang, B.S.
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.04a
    • /
    • pp.111-115
    • /
    • 2005
  • Recently, natural fibers draw much interests in composite industry due to low cost, light weight, and environment-friendly characteristics compared with glass fibers. In this study, mechanical properties were evaluated for two extreme cases of jute fiber orientations, i.e. the unidirectional yarn composites and the felt fabric composites. Samples of jute fiber composites were fabricated by RTM process using epoxy resin, and tensile, compression, and shear tests were conducted. As can be expected, unidirectional fiber specimens in longitudinal direction showed the highest strength and modulus. Compared with glass/epoxy composites of the similar fabric architecture and fiber volume fraction, the tensile strength and modulus of jute felt/epoxy composites reached only 40% and 50% levels. However, the specific tensile strength and modulus increased to 80% and 90% of the glass/epoxy composites. The main reason for the poor mechanical properties of jute composites is associated with the weak interfacial bonding between fiber and matrix. The effect of surface treatment of jute fibers on the interfacial bonding will be examined in the future work.

  • PDF

Developement of New Glass Fiber Reinforced Composite Insulating Material by Reactive Plasma Surface Treatment(II) (반응성 플라즈마 표면처리기법을 도입한 새로운 유리섬유 강화 복합재료의 개발 및 물성연구(II))

  • 박정후;조정수;성문열;김두환;김규섭
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1995.05a
    • /
    • pp.216-219
    • /
    • 1995
  • One of the principal problems encountered in the use of glass fiber reinforced Plastic composites(GFRP) is to establish an active fiber surface to achieve maximum adhesion between resin and fiber surface. In order to develope new process to overcome the disadvantage of chemical agent, we have studied the effect of reactive plasma glass surface treatment on the electrical and mechanical properties of glass fiber reinforced epoxy composites. It is found that the electrical and mechanical characteristics of the composites treated with plasma is improved especially in the dielectric strength by 20% and tensile strength by 15%, whereas the tan $\delta$ is decreased significantly.

  • PDF

A Study on the Frictional Characteristics of Fiber Reinforced Composites under Corrosive Environment (부식 환경 하에서의 섬유강화복합재료의 마찰 및 마모 특성 연구)

  • Choong-Yong Park;Dong-Hyun Park;Soo-Jeong Park;Yun-Hae Kim
    • Composites Research
    • /
    • v.36 no.1
    • /
    • pp.37-41
    • /
    • 2023
  • The treated water inside the ballast electrolytic cell creates a highly alkaline atmosphere due to hydroxide generated at the DSA(Dimension Stable Anode) electrode during electrolysis. In this study, a composite material that can replace the weakness of the PE-coated steel pipe used in the existing ballast pipe was prepared. The test samples are BRE(Basalt fiber reinforced epoxy), BRP(Basalt fiber reinforced unsaturated polyester), GRE(Glass fiber reinforced epoxy), and GRP(Glass fiber reinforced unsaturated polyester). And then it was immersed in NaOH for 720 hours. The friction test of each specimen was conducted. The Friction coefficient analysis according to material friction depth and interfacial adhesion behavior between resin and fiber were analyzed. As a result, the mechanism of interfacial separation between resin and fiber could be analyzed. In the case of the unsaturated polyester resin with low interfacial bonding strength the longer the immersion time in the alkaline solution, the faster the internal deterioration caused by the deterioration that started from the surface, resulting in a decrease in the friction coefficient. It is hoped that this study will help to understand the degradation behavior of composite materials immersed in various chemical solutions such as NaOH, acid, and sodium hypochlorite in the future.

Dielectric Properties of Glass Fiber Reinforced Epoxy Composites by Cure under Pressure (가압 겔화법에 의한 에폭시 복합 재료의 유전적 특성)

  • 곽영순;신중홍;박정후
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.38 no.4
    • /
    • pp.292-297
    • /
    • 1989
  • To achieve fiber/resin reinforced composites with high quality (void-free, uniform compaction), a basic understanding of the principal factors related to a thermal cycle to cure the matrix and a pressure to compact the system is necessary. In this paper, some dielectric and mechanical properties of glass cloth reinforced epoxy composites are measured as a function of fabrication conditions, where the time that the pressure is applied to the sample during the cure process is controlled. Both the tensile strength and frequency characteristics of the sample are improved significantly when the pressure is applied at the start point of gelling.

  • PDF