• 제목/요약/키워드: Epoxy resin

검색결과 1,190건 처리시간 0.025초

석조 문화재 보존용 저황변 Epoxy의 제조 및 물성 연구 (Preparation and Physical Properties of Epoxy with Improved Yellowing Resistance for the Preservation of Stone Cultural Heritage)

  • 이승연;오승준;위광철
    • 박물관보존과학
    • /
    • 제26권
    • /
    • pp.1-12
    • /
    • 2021
  • 석조 문화재 보존처리 시 사용되고 있는 Bisphenol A계 Epoxy 수지의 Yellowing 현상개선과 재료의 다양성 확보를 위해 hydrogenated Bisphenol A계 주제 기반의 석조 문화재 보존용 Epoxy 수지를 제조하여 물성 비교 실험을 진행하였다. 실험 결과 제조한 Epoxy 수지가 인장강도, 접착 강도, 가공성에서 기존 재료보다 향상된 물성을 확인할 수 있었으며, 황변성은 약 5 ~ 8배 개선되었다. 이러한 결과는 대부분이 야외에 위치한 석조 문화재의 특성상 안정적인 보존 재료로서의 적용이 가능할 것으로 판단된다.

수용액에 용출된 에폭시수지 화합물의 TiO$_2$ 광분해효과와 생물독성에 미치는 영향 (Effects of TiO$_2$ Photodegradation on Leaching from Epoxy Resin Chemical in Water and Biological Toxicity)

  • 여민경;조은정
    • Environmental Analysis Health and Toxicology
    • /
    • 제19권3호
    • /
    • pp.271-278
    • /
    • 2004
  • Epoxy resins are mostly used as a molding material for drinking water tank. Bisphenol A is used at a constituent material for epoxy resins and is widely suspected to act as an endocrine disrupter. In this study, we investigated embryo hatching in zebrafish reared in water undergone leaching process of expoxy resin, and found a decreased survival rate. Bisphenol A eluted from epoxy resin in drinking water tank was completely degraded by TiO$_2$ photocatalysis. We detected 7.8 ng/ml of bisphenol A in epoxy resin tank, and observed that the concentration was undetectable after 48h photocatalysis over TiO$_2$. There was no toxicity in hatching rates in zebrafish and morphogenesis after photocatalysis. The effect of TiO$_2$ photocatalytic reactions on the catalase activities in the f]y stage of zebrafish was also examined. At 1 week post hatching, cataiase activities were higher both in the group of epoxy resin with 48 h TiO$_2$ photocatalysis and in the TiO$_2$ photocatalysis for 48 hours were higher than control group. However catalase activities of the treatment group of epoxy resin by TiO$_2$ photocatalysis for 48 hours were similar to control in 5 weeks post hatching fries. In conclusion, the toxicity of TiO$_2$ photocatalysis was not observed in this zebrafish.

전하전이착체형 잠재성 촉매를 사용한 반도체 성형용 자소성 에폭시 수지 시스템의 경화 반응속도 연구 (Cure Kinetics of Self-Extinguishing Epoxy Resin Systems with Charge Transfer Complex Type Latent Catalyst for Semiconductor Encapsulation)

  • 김환건
    • 반도체디스플레이기술학회지
    • /
    • 제13권4호
    • /
    • pp.27-32
    • /
    • 2014
  • The cure properties of self-extinguishing epoxy resin systems with different charge transfer type latent catalysts were investigated, which are composed of YX4000H as a biphenyl epoxy resin, MEH-7800SS as a hardener, and charge transfer type latent catalysts. We designed and used five kinds of charge transfer type latent catalyst and compared to epoxy resin systems with Triphenylphosphine-Benzoquinone(TPP-BQ) as reference system. The cure kinetics of these systems were analyzed by differential scanning calorimetry with an isothermal approach, the kinetic parameters of all systems were reported in generalized kinetic equations with diffusion effects. The epoxy resin systems with Triphenylphosphine-Quinhydrone(TPP-QH), Triphenylphosphine-Benzanthrone(TPP-BT) and Triphenylphosphine-Anthrone(TPP-AT) as a charge transfer type latent catalyst showed a cure conversion rate of equal or higher rate than those with TPP-BQ. These systems with TPP-QH and Triphenylphosphine-Tetracyanoethylene(TPP-TCE) showed a critical cure reaction conversion of equal or higher conversion than those with TPP-BQ. The increases of cure conversion rates could be explained by the decrease of the activation energy of these epoxy resin systems. It can be considered that the increases of critical cure reaction conversion would be dependent on the crystallinity of the biphenyl epoxy resin systems.

DGEBA에 대한 폴리트리아졸술폰의 강인화 효과 연구 (Effect of Polytriazolesulfone Addition on Fracture Toughness of DGEBA Epoxy Resin)

  • 권웅;이민규;한민우;정의경
    • 한국염색가공학회지
    • /
    • 제31권2호
    • /
    • pp.118-126
    • /
    • 2019
  • This study aims to investigate the effect of polytriazolesulfone(PTS) addition on fracture toughness of diglycidyl ether of bisphenol A(DGEBA) and 4,4'-diaminodiphenylsulfone(DDS). Various amounts of PTS were added to DGEBA/4,4'-DDS in diazide and dialkyne monomer forms and polymerized during the epoxy curing process. Fracture toughness(K1C), tensile properties and thermal stability of the PTS added epoxy resin were evaluated and compared with those of PES, the conventional high Tg toughening agent, added epoxy resin. Fracture toughness of the PTS added epoxy resin was dramatically improved up to 133%, as the amount of PTS added increased, whereas that of the PES added epoxy resin was improved by only 67%. The tensile strength of PTS added DGEBA/4,4'-DDS was similar to the epoxy resin without PTS and tensile modulus was improved by 20%. And thermal stability of the PTS added epoxy resin was improved up to 14%. Therefore, PTS addition to DGEBA/4,4'-DDS, as a toughening agent, is very effective way to improve its fracture toughness without any lowering in other properties.

2,3 성분 상호침입망목 에폭시 복합재료의 절연 파괴 특성에 관한 연구 (A study on the dielectric breakdown properties of two and three interpenetrating polymer network epoxy composites)

  • 김명호;김경환;손인환;이덕진;장경욱;김재환
    • E2M - 전기 전자와 첨단 소재
    • /
    • 제9권4호
    • /
    • pp.364-371
    • /
    • 1996
  • In this study, in order to investigate the applicability of IPN structure to epoxy resin which has been widely used as electrical and electronic insulating materials, DC dielectric breakdown properties and morphology were compared and analyzed according to variation of network structure, using the single network structure specimen formed of epoxy resin alone, interpenetrating polymer network specimen formed of epoxy resin/methacrylic acid resin, and interpenetrating polymer network specimen formed of epoxy resin/methacrylic acid resin/polyurethane resin. As results of the measunnent of DC dielectric breakdown strength at 50[.deg. C] and 130[>$^{\circ}C$], IPN specimen formed of epoxn, resin 100[phr] and methacrylic acid resin 35[phr] was the most excellent, and which corresponded to the SEM phenomena. The effect of IPN was more remarkable at high temperature region than at low temperature region. It is supposed that the defect of epoxy resin, dielectric breakdown strength is lowered remarkably at high temperature region, be complemented according to introducing IPN method.

  • PDF

Amine Terminated Polyetherimide/에폭시 수지 시스템의 경화공정연구와 파괴인성에 관한 연구 (A Study on the Curing Behavior and Toughness of Amine Terminated Polyetherimide/Epoxy Resin System)

  • 김민영;이광기;김원호;황병선;김대식;박종만
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2002년도 춘계학술발표대회 논문집
    • /
    • pp.147-150
    • /
    • 2002
  • The cure kinetics of blends of epoxy (DGEBA:diglycidyl ether of bisphenol A)/anhydride (NMA:nadic methyl anhydride) resin with synthesized amino terminated polyetherimide (AT-PEI) were studied using differential scanning calorimetry (DSC) and Dynamic Mechanical Analysizer(DMA) under isothermal condition to determine the reaction parameters and gel-vitrification behavior. The fracture toughness of AT-PEI 20phr/epoxy resin system was improved over 224% and 42.5% more than neat epoxy resin and commercial PEI/Epoxy Resin System.

  • PDF

온도에 따른 수중경화형 에폭시수지의 레올로지 특성 (The Properties of Rheology of Underwater-Hardening Epoxy Resin According to the Temperature)

  • 정은혜;강철;곽은구;배기선;이대경;김진만
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2006년도 춘계학술논문 발표대회 제6권1호
    • /
    • pp.49-52
    • /
    • 2006
  • Epoxy resin has less reaction shrinkage, has better water proofing and thermal resistance than other repairing materials, to it has been applied broadly to repair and finish buildings and infrastructures. Although the ambient temperature constructed is varied with the seasons and epoxy resin has to mix with appropriate hardener due to the non self-hardening, as the real construction of it, the ambient temperature is ignored and the blending ration of epoxy resin and hardener is fixed. Also, because of the hardening time is aimed to temperature condition and the tolerance of blending ratio, we investigated the variation of viscosity according to ambient temperatures and hardener ratios. As a results of study, we can select the economical blending ratio of the epoxy resin and hardener according to site situation.

  • PDF

에폭시 수지 접착제를 보강한 타일의 부착성능 평가 (Adhesion Properties of Epoxy Resin Adhesive Reinforced Tile)

  • 이상규;김규용;황의철;손민재;이상윤;남정수
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2020년도 봄 학술논문 발표대회
    • /
    • pp.128-129
    • /
    • 2020
  • In this study, flexural strength and tile adhesion strength were evaluated by using a mortar, dry mortar and an epoxy resin reinforced mortar to examine the adhesion performance by reinforcing the epoxy resin adhesive. As a result, it was clearly confirmed that the effect of improving the adhesion strength by reinforcing the epoxy resin adhesive regardless of the type of tile, and in particular, when applying the epoxy resin adhesive to the porcelain and polishing tiles, it is judged that sufficient adhesion performance can be secured.

  • PDF

에폭시 수지 모르터의 특성에 관한 실험적 연구 (Experimental Studies on the Properties of Epoxy Resin Mortars)

  • 연규석;강신업
    • 한국농공학회지
    • /
    • 제26권1호
    • /
    • pp.52-72
    • /
    • 1984
  • This study was performed to obtain the basic data which can be applied to the use of epoxy resin mortars. The data was based on the properties of epoxy resin mortars depending upon various mixing ratios to compare those of cement mortar. The resin which was used at this experiment was Epi-Bis type epoxy resin which is extensively being used as concrete structures. In the case of epoxy resin mortar, mixing ratios of resin to fine aggregate were 1: 2, 1: 4, 1: 6, 1: 8, 1:10, 1 :12 and 1:14, but the ratio of cement to fine aggregate in cement mortar was 1 : 2.5. The results obtained are summarized as follows; 1.When the mixing ratio was 1: 6, the highest density was 2.01 g/cm$^3$, being lower than 2.13 g/cm$^3$ of that of cement mortar. 2.According to the water absorption and water permeability test, the watertightness was shown very high at the mixing ratios of 1: 2, 1: 4 and 1: 6. But then the mixing ratio was less than 1 : 6, the watertightness considerably decreased. By this result, it was regarded that optimum mixing ratio of epoxy resin mortar for watertight structures should be richer mixing ratio than 1: 6. 3.The hardening shrinkage was large as the mixing ratio became leaner, but the values were remarkably small as compared with cement mortar. And the influence of dryness and moisture was exerted little at richer mixing ratio than 1: 6, but its effect was obvious at the lean mixing ratio, 1: 8, 1:10,1:12 and 1:14. It was confirmed that the optimum mixing ratio for concrete structures which would be influenced by the repeated dryness and moisture should be rich mixing ratio higher than 1: 6. 4.The compressive, bending and splitting tensile strenghs were observed very high, even the value at the mixing ratio of 1:14 was higher than that of cement mortar. It showed that epoxy resin mortar especially was to have high strength in bending and splitting tensile strength. Also, the initial strength within 24 hours gave rise to high value. Thus it was clear that epoxy resin was rapid hardening material. The multiple regression equations of strength were computed depending on a function of mixing ratios and curing times. 5.The elastic moduli derived from the compressive stress-strain curve were slightly smaller than the value of cement mortar, and the toughness of epoxy resin mortar was larger than that of cement mortar. 6.The impact resistance was strong compared with cement mortar at all mixing ratios. Especially, bending impact strength by the square pillar specimens was higher than the impact resistance of flat specimens or cylinderic specimens. 7.The Brinell hardness was relatively larger than that of cement mortar, but it gradually decreased with the decline of mixing ratio, and Brinell hardness at mixing ratio of 1 :14 was much the same as cement mortar. 8.The abrasion rate of epoxy resin mortar at all mixing ratio, when Losangeles abation testing machine revolved 500 times, was very low. Even mixing ratio of 1 :14 was no more than 31.41%, which was less than critical abrasion rate 40% of coarse aggregate for cement concrete. Consequently, the abrasion rate of epoxy resin mortar was superior to cement mortar, and the relation between abrasion rate and Brinell hardness was highly significant as exponential curve. 9.The highest bond strength of epoxy resin mortar was 12.9 kg/cm$^2$ at the mixing ratio of 1:2. The failure of bonded flat steel specimens occurred on the part of epoxy resin mortar at the mixing ratio of 1: 2 and 1: 4, and that of bonded cement concrete specimens was fond on the part of combained concrete at the mixing ratio of 1 : 2 ,1: 4 and 1: 6. It was confirmed that the optimum mixing ratio for bonding of steel plate, and of cement concrete should be rich mixing ratio above 1 : 4 and 1 : 6 respectively. 10.The variations of color tone by heating began to take place at about 60˚C, and the ultimate change occurred at 120˚C. The compressive, bending and splitting tensile strengths increased with rising temperature up to 80˚ C, but these rapidly decreased when temperature was above 800 C. Accordingly, it was evident that the resistance temperature of epoxy resin mortar was about 80˚C which was generally considered lower than that of the other concrete materials. But it is likely that there is no problem in epoxy resin mortar when used for unnecessary materials of high temperature resistance. The multiple regression equations of strength were computed depending on a function of mixing ratios and heating temperatures. 11.The susceptibility to chemical attack of cement mortar was easily affected by inorganic and organic acid. and that of epoxy resin mortar with mixing ratio of 1: 4 was of great resistance. On the other hand, when mixing ratio was lower than 1 : 8 epoxy resin mortar had very poor resistance, especially being poor resistant to organicacid. Therefore, for the structures requiring chemical resistance optimum mixing of epoxy resin mortar should be rich mixing ratio higher than 1: 4.

  • PDF

고전압 중전기기용 에폭시 수지 3종에 대한 교류트리잉 파괴특성 (Characteristics of AC Treeing for Three Epoxy Resins for High Voltage Heavy Electric Machine Appliances)

  • 박재준
    • 전기학회논문지
    • /
    • 제67권10호
    • /
    • pp.1322-1329
    • /
    • 2018
  • In this paper, the reliability test of three kinds of epoxy resin for GIS Spacer, which is a high voltage based heavy electric machine, AC electrical treeing experiments were performed. Three types of epoxy resins, Araldite B41, CT 5531 CI and B46, have slight viscosity differences. An non-uniform electric field, E = 1149.4 kV/mm, as the needle to plate electrode, a power source with a frequency of 1 kHz was applied to the tree electrode for accelerated deterioration. The treeing phenomena of the three kinds of epoxy resin all initiated, propagated, and destroyed by the branch tree. Epoxy Resin B46 was 145 times longer than B41 and 53 times longer than CT 5531CI. I think that the choice of epoxy resin is very important in choosing high voltage heavy electric machine insulation materials.