• Title/Summary/Keyword: Epoxy coating

Search Result 258, Processing Time 0.022 seconds

Study on the Corrosion and Cavitation Erosion Control of Glass Flake Lining for Mild Steel in Marine Environment (해양환경 중에서 Glass Flake 라이닝 강재의 부식과 캐비테이션 침식 방지에 관한 연구)

  • Lim, Uh Joh;Kim, Seong Hoon
    • 유체기계공업학회:학술대회논문집
    • /
    • 2000.12a
    • /
    • pp.359-365
    • /
    • 2000
  • Port facilities and marine structures used in marine environment were encountered to corrosion damages because of the influence of $Cl^-$. Generally, to protect these accidents, mainly applied anti-corrosion paint and epoxy coating. But it was still remained erosion-corrosion damage such as impingement erosion, cavitation erosion, deposit attack. There was needs to develope the new coating materials to protective those corrosion damages. This paper, polyester glass flake, vinylester glass flake lining and epoxy coating for SS were investigated electrochemical tests and cavitation erosion test for corrosion behaviour under sea water. The main results obtained are as follows, 1) Surface of epoxy coating appear erosion pin hole but surface of polyester glass flake and vinylester glass flake lining do not appear erosion pin hole after impingement-cavitation erosion test in sea water. 2) Weight loss of polyester glass flake and vinylester glass flake lining do not occur after impingement-cavitation erosion test in sea water. 3) Corrosion current density of polyester glass flake lining less drained than epoxy coating and substrate under corrosion potential.. 4) Corrosion current density of vinylester glass flake lining with three coating less drained than that of polyester glass flake lining with two coating.

  • PDF

A Study on the Corrosion Control of Glass Flake Lining for Mild Steel in Marine Environment (해양환경 중에서 Glass Flake 라이닝 강재의 부식방지에 관한 연구)

  • Lim, Uh-Joh;Kim, Seong-Hoon
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.12 no.2
    • /
    • pp.164-175
    • /
    • 2000
  • Port facilities and marine structures used in marine environment were encountered to corrosion damages because of the influence of Cl-. Generally, to protect these accidents, anti-corrosion paint and epoxy coating have been used. But they were still remained erosion-corrosion damage like impingement erosion, cavitation erosion and deposit attack. It is necessary to develope the new composite lining material in order to protective those corrosion damages. In this paper, polyester glass flake, vinylester glass flake lining and epoxy coating for SS400 were investigated by the electrochemical polarization test and the impingement-cavitation erosion test for corrosion behaviour under the sea water. The main results obtained are as follows ; 1) Epoxy coating appear potentiodynamic polarization behaviour, but polyester glass flake and vinylester glass flake lining do not appear potentiodynamic polarization behaviour. 2) Open circuit potential of polyester glass flake lining is more noble than that of epoxy coating and corrosion current density of polyester glass flake lining is less drained than that of epoxy coating in sea water. 3) Open circuit potential of vinylester glass flake lining is more noble than that of polyester glass flake lining and corrosion current density of vinylester glass flake lining is less drained than that of polyester glass flake lining in the sea water.

  • PDF

Evaluation and Prediction of Corrosion Resistance of Epoxy Systems and Epoxy/Polyurethane Systems in Seawater Environment

  • Lee, Chul-Hwan;Shin, Chil-Seok;Baek, Kwang-Ki
    • Corrosion Science and Technology
    • /
    • v.5 no.1
    • /
    • pp.33-38
    • /
    • 2006
  • Current coating practice requires the thickness of anti-corrosion organic coatings to be over $250{\mu}m$ for immersion parts of ships and offshore structures and the corrosion resistance of these coatings has been evaluated by destructive and qualitative analysis. Recently, Electrochemical Impedance Spectroscopy(EIS) method has been employed, as an alternative, to evaluate corrosion resistance of organic coatings. This method is characterized as being nondestructive, reproducible, and quantitative in evaluating aging of organic coatings. In this study, EIS method was adopted to quantitatively and effectively select the coating systems having optimized protective performance. Evaluations of several epoxy and epoxy/polyurethane coating systems typically used for ships and offshore structures were carried out in wet($50^{\circ}C$, $90^{\circ}C$) and dry(room temp.) environments to accelerate the degradation of the organic coatings. These results were compared with the conventional scribed(scratched) test results. The plausible prediction model for determining the remaining life-time of coating systems was also proposed based on variations of impedance data, FT-IR and $T_g$ measurements results.

Perforrmance Tests of Epoxy-coated Reinforcing Bars : Corrosion Protection Properties (에폭시 도막 철근의 내부식 성능에 관한 실험적 연구)

  • 신영수;홍기섭;최완철
    • Magazine of the Korea Concrete Institute
    • /
    • v.6 no.6
    • /
    • pp.173-179
    • /
    • 1994
  • Epoxy coated bars protecting reinforcing bars from corrosion and enhancing durability of reinforced concrete structures are tested to evaluate corrosion protection properties. Tests are performed based on the relevant sta.ndards of KS and ASTM, such as chenical resistance, salt water spray, salt crock test and chloride ermeability test. with the main varlable of the coating thlckness. Test results show good chemical protection property and chloride permeability. The results of the salt water spray and the salt crock test show that epoxy coating well protects the reinforcing bars from corrosion, cornparing to the biack bars without epoxy coatmg. However, several spots on the coated bars are rusted at the pinholes or un the bars with coating thickness less thar $200{\mu}M$. Special cautions are required i n the process of blast cleanmg when applying the usion-bonded epoxy coating.

Determining the Safer Thickness of the Epoxy Coating on Wooden Utensils (식품 안전성 확보를 위한 목재 식기용 에폭시 코팅의 두께 결정)

  • 이광수;임동길;김상엽;장미란;김우성;이영자
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.33 no.2
    • /
    • pp.447-450
    • /
    • 2004
  • Overall migration through epoxy layer coated wood was investigated to estimate the coating thickness satisfying the regulatory limit. As an index of overall migration, KMnO$_4$ oxidizable extractives by the food simulant water solution was used. Migration pattern in interest range could described by a simple diffusion model and the temperature dependence of the permeability index could be explained by Arrhenius equation. The thickness of epoxy coating greater than 0.004 mm was analyzed to be required for satisfying the regulatory guideline.

Performance Tests of Epoxy-Coated Reinforcing Bars (에폭시 도막철근의 성능 실험연구)

  • 최완철;김채훈;신영수;홍기섭;홍영균;정일영
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1994.04a
    • /
    • pp.158-162
    • /
    • 1994
  • Test results to evaluate the mechanical properties of epoxy-coated bars and corrosion protection characteristics of epoxy coating on the bars are described. The results show good adhesion and abrasion resistance satisfying the requirements in relevant standards. The test results also show that for a coating thickness ranging from 150${\mu}{\textrm}{m}$ to 300${\mu}{\textrm}{m}$, satisfactory results are obtained regarding bendability. Cautions shall be required when bending epoxy-coated bars at a high bending degree and at a low temperature. The results of accelerated corrosion tests show good corrosion resistance. However, surface defects from the steel itself and insufficient blast-clean process form weak points resulting blistering or disbonding of the coating. The use of epoxy-coated bars is expected to help protect corrosion of reinforcement and extend the service life of reinforced concrete structures.

  • PDF

Performance Tests of Epoxy-coated Reinforcing Bars : Mechanical Properties (에폭시 도막 철근의 기계적 성능에 관한 실험적 연구)

  • 최완철;김채훈;신영수;홍기섭
    • Magazine of the Korea Concrete Institute
    • /
    • v.6 no.3
    • /
    • pp.173-179
    • /
    • 1994
  • Test results to evaluate the rr~echanical properties of epoxy-coated reinforcing bars are described. Tests include adhesion, impact, bend, and abrasion test of epoxy coating to reinforcing steel, specified in relevant KS and ASTM standards. Three nomnal thicknesses of epoxy coating, $120{\mu}m$, $220{\mu}m$, $300{\mu}m$ are used. The results show good adhesion and abrasion resistance satisfying the requirements. The results also show faily good bendability. However, the thicker the coating, the weaker the adhesion is. Impact resistance is in the tolerable range, but it is recorrmerided that careful treatments are required during handling of epoxy-coated bars. From the results, epoxy-coated bars, with a coating thickness ranging from $150{\mu}m$ to $300{\mu}m$, should well perform for fabrication in field construction.

Laboratory Evaluation of Select Methods of Corrosion Prevention in Reinforced Concrete Bridges

  • Pritzl, Matthew D.;Tabatabai, Habib;Ghorbanpoor, Al
    • International Journal of Concrete Structures and Materials
    • /
    • v.8 no.3
    • /
    • pp.201-212
    • /
    • 2014
  • Sixteen reinforced concrete laboratory specimens were used to evaluate a number of corrosion prevention methods under an accelerated (6 months) testing program. The use of galvanic thermal sprayed zinc, galvanic embedded anodes, a tri-silane sealer, an acrylic coating, and an epoxy/polyurethane coating was evaluated. The specimens received various treatments prior to exposure to accelerated corrosion. The performance of the treatments was evaluated with respect to corrosion currents, chloride ingress, extent of cracking, severity of rust staining, and visual inspection of the reinforcing steel after the conclusion of testing and dissection. Results indicated that the tri-silane sealer, the conjoint use of galvanic thermal sprayed zinc and epoxy/polyurethane coating, the epoxy/polyurethane coating, and acrylic coating performed better than the other methods tested. Higher chloride concentrations were measured in the vicinity of embedded zinc anodes.

Study on the Compositional Construction of Epoxy Based Powder Paint (환경친화형 에폭시계 분체도료의 조성구축 연구)

  • Lim, Hong-Joon;Chung, Kyung-Ho
    • Clean Technology
    • /
    • v.12 no.1
    • /
    • pp.27-35
    • /
    • 2006
  • Main compositions of powder paint based on thermoset type epoxy resin consist of epoxy resin for powder coating, curing agent, filler and pigment. The curing system used in this study was based on diglycidyl ether of bisphenol-A (DGEBA) and dicyan diamide (DICY). The curing behavior and rheological properties of powder coating material were investigated using DSC and rheometer, respectively. And the adhesion strength between steel and powder coating material was measured using lap shear geometry. The optimum formulation of epoxy powder paint obtained from this study was base resin of 100 phr, DICY of 6 phr, $CaCO_3$ of 20 phr, and $TiO_2$ of 10 phr.

  • PDF

A Study on the Emission of VOCs in Parking Lot Floor Coating (주차장 바닥 코팅제의 휘발성유기화합물 배출에 관한 연구)

  • Lee, Seung-Chan;Yoon, Gil-Ho;Park, Yong-Soon;Kil, Bae-Su;Yoon, Hyun-Do
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.4
    • /
    • pp.152-158
    • /
    • 2019
  • Measure the type and content of VOCs for A-company epoxy coating and B-company floor coating(Type A, B), which are used as flooring materials for parking lots. Than the VOCs used gas detectors to measure gas emissions, assuming the worst environment to reduce errors in external environments in the formaldehyde, toluene and xylene harmful to workers and tenants. As a result, A-company epoxy coating has the largest amount of VOCs, and compared to A-company epoxy coating, B-company floor coating of A type represented about 79% less and B type about 96% less. In addition, A-company epoxy coating was also the highest in gas emission measurement for formaldehyde, toluene and xylene using gas detector after 1 hour and 8 hours in closed environment conditions. B-company floor coating A type was less than A-company epoxy coating, which was about 42.3% less measured. And type B satisfied all TWA even in closed environment conditions.