• Title/Summary/Keyword: Epithelial differentiation

Search Result 215, Processing Time 0.028 seconds

Isolation of Mesenchymal Stem-like Cells from a Pituitary Adenoma Specimen

  • Shim, Jin-Kyoung;Kang, Seok-Gu;Lee, Ji-Hyun;Chang, Jong Hee;Hong, Yong-Kil
    • Biomedical Science Letters
    • /
    • v.19 no.4
    • /
    • pp.295-302
    • /
    • 2013
  • Some of the pituitary adenomas are invasive and spread into neighboring tissues. In previous studies, the invasion of pituitary adenomas is thought to be associated with epithelial-mesenchymal transition (EMT). In addition to that, we thought that mesenchymal stem cells (MSCs) exist in relevant microenvironment in pituitary adenoma. However, it has been little known about the existence of MSCs from pituitary adenoma. So we investigated whether mesenchymal stem-like cells (MSLCs) can be isolated from the pituitary adenoma specimen. We isolated and cultured candidate MSLCs from the fresh pituitary adenoma specimen with the same protocols used in culturing bone marrow derived MSCs (BM-MSCs). The cultured candidate MSLCs were analyzed by fluorescence-activated cell sorting (FACS) for surface markers associated with MSCs. Candidate MSLCs were exposed to mesenchymal differentiation conditions to determine the mesenchymal differentiation potential of these cells. To evaluate the tumorigenesis of candidate MSLCs from pituitary adenoma, we implanted these cells into the brain of athymic nude mice. We isolated cells resembling BM-MSCs named pituitary adenoma stroma mesenchymal stem-like cells (PAS-MSLCs). PAS-MSLCs were spindle shaped and had adherent characteristics. FACS analysis identified that the PAS-MSLCs had a bit similar surface markers to BM-MSCs. Isolated cells expressed surface antigen, positive for CD105, CD75, and negative for CD45, NG2, and CD90. We found that these cells were capable of differentiation into adipocytes, osteocytes and chondrocytes. Tumor was not developed in the nude mice brains that were implanted with the PAS-MSLCs. In this study, we showed that MSLCs can be isolated from a pituitary adenoma specimen which is not tumorigenic.

Insulin-like growth factor가 소장 점막 세포 증식에 미치는 영향

  • 윤정한
    • Proceedings of the Korean Nutrition Society Conference
    • /
    • 1995.11b
    • /
    • pp.11-34
    • /
    • 1995
  • Growth hormone (GH) plays a key role in regulating postnatal growth and can stimulate growth of animals by acting directly on specific receptors on the plasma membrane of tissues or indirectly through stimulating insulin-like growth factor (IGF)-I synthesis and secretion by the liver and other tissues. IGF-I and IGF-Ⅱ are polypeptides with structural similarity with proinsulin that stimulate cell proliferation by endocrine, paracrine and autocrine mechanisms. The initial event in the metabolic action of IGFs on target cells appears to be their binding to specific receptors on the plasma membrane. Current evidence indicates that the mitogenic actions of both IGFs are mediated primarily by binding to the type I IGF receptors, and that IGF action is also mediated by interactions with IGF-binding proteins (IGFBPs). Six distinct IGFBPs have been identified that are characterized by cell-specific interaction, transcriptional and post-translational regulation by many different effectors, and the ability to either potentiate or inhibit IGF actions. Nutritional deficiencies can have their devastating consequence during growth. Although IGF-I is the major mediator of GH's action on somatic growth, nutritional status of an organism is a critical regulator of IGF-I and IGFBPs. Various nutrient deficiencies result in decreased serum IGF-I levels and altered IGFBP levels, but the blood levels of GH are generally unchanged or elevated in malnutrition. Effects of protein, energy, vitamin C and D, and zinc on serum IGF and IGFBP levels and tissue mRNA levels were reviewed in the text. Multiple factors are involved in the regulation of intestinal epithelial cell growth and differentiation. Among these factors the nutritional status of individuals is the most important. The intestinal epithelium is an important site for mitogenic action of the IGFs in vivo, with exogenous IGF-I stimulating mucosal hyperplasia. Therefore, the IGF system appears to provide and important mechanism linking nutrition and the proliferation of intestinal epithelial cells. In order to study the detailed mechanisms by which intestinal mucosa is regulated, we have utilized IEC-6 cells, an intestinal epithelial cell line and Caco-2 cells, a human colon adenocarcinoma cell line. Like intestinal crypt cells analyzed in vivo or freshly isolated intestinal epithelial cells, IEC-6 cells and Caco-2 cells possess abundant quatities of both type Ⅰ and type Ⅱ IGF receptors. Exogenous IGFs stimulate, whereas addition of IGFBP-2 inhibits IEC-6 cell proliferation. To investigate whether endogenously secreted IGFBP-2 inhibit proliferation, IEC-6 cells were transfected with a full-length rat IGFBP-2 cDNA anti-sense expression construct. IEC-6 cells transfected with anti-sense IGFBP-2 protein in medium. These cells grew at a rate faster than the control cells indicating that endogenous IGFBP-2 inhibits proliferation of IEC-6 cells, probably by sequestering IGFs. IEC-6 cells express many characteristics of enterocyte, but do not undergo differentiation. On the other hand, Caco-2 cells undergo a spontaneous enterocyte differentiation. On the other hand, Caco-2 cells undergo a spontaneous enterocyte differentiation after reaching confluency. We have demonstrated that Caco-2 cells produce IGF-Ⅱ, IGFBP-2, IGFBP-3, and an as yet unidentified 31,000 Mr IGFBP, and that both mRNA and peptide secretion of IGFBP-2 and IGFBP-3 increased, but IGFBP-4 mRNA and protein secretion decreased after the cells reached confluency. These changes occurred in parallel to and were coincident with differentiation of the cells, as measured by expression of sucrase-isomaltase. In addition, Caco-2 cell clones forced to overexpress IGFBP-4 by transfection with a rat IGFBP-4 cDNA construct exhibited a significantly slower growth rate under serum-free conditions and had increased expression of sucrase-isomaltase compared with vector control cells. These results indicate that IGFBP-4 inhibits proliferation and stimulates differentiation of Caco-2 cells, probably by inhibiting the mitogenic actions of IGFs.

  • PDF

The Effects of Ovarian Steroid Hormones on the Phosphatase Activity on the Rat Uterine Endometrium at the Early Pregnancy (난소 스테로이드 호르몬이 임신초기의 흰쥐 자궁 내막조직의 Phosphatase 활성에 미치는 영향)

  • Kim, Sung-Rye;Kim, Moon-Kyoo;Cho, Wan-Kyoo
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.9 no.1_2
    • /
    • pp.55-68
    • /
    • 1982
  • The present investigation has been undertaken to understand the mechanism of implantation process, by demonstrating the role of ovarian steroids in connection with phosphatase activity in the differentiation of uterine endometrium for implantation. The results obtained are as followings: The differentiation of the uterine endometrial tissue was closely influenced by the ovarian steroid hormones; at first, 17${\beta}$-estradiol initiated the differentiation of the uterine luminal and glandular epithelial cells, and then progesterone induced differentiation of stromal cells, and thereby two steroids maintain decidualization of the uterine tissues. We observed that the phosphatase activities seem to be dependent upon the ovarian steroids; that is the activity showed higher level in progesterone treated group than in estradiol treated one, and the highest activity was found in the group treated with both estradiol and progesterone. Acid phosphatase showed the highest activity whereas alkaline phosphatase showed the lowest in the rat uterine endometrium during early pregnancy.

  • PDF

Study of Rat Mammary Epithelial Stem Cells In Vivo and In Vitro (생체 및 시험관에서 유선 상피 모세포의 분리와 동정)

  • Nam Deuk Kim;Kee-Joo Paik
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.24 no.3
    • /
    • pp.470-486
    • /
    • 1995
  • Mammary epithelial cells contain a subpopulation of cells with a large proliferativ potential which are responsible for the maintenance of glandular cellularity and are the progenitor cells of mammary cancer. These clonogens give rise to multicellular clonal alveolar or ductal units(AU or DU) on transplantation and hormonal stimulation. To isolate putative mammary clonogens, enzymatically monodispersed rat mammary epithelial cells from organoid cultures and from intact glands are sorted by flow cytometry according to their affinity for FITC labeled peanut lectin(PNA) and PE labeled anti-Thy-1.1 antibody(Thy-1.1) into four subpopulations : cells negative to both PNA and Thy-1.1(B-), PNA+cells, Thy-1.1+cells, and cells positive to both reagents(B+). The in vivo transplantation assays indicate that the clonogenic fractions of PNA+cells from out-growths of organoids in primary cultures for three days in complete hormone medium(CHM) are significantly higher than those of cells from other subpopulations derived from cultrues or from intact glands. Extracellular matrix(ECM) is a complex of several proteins that regulated cell function ; its role in cell growth and differentiation and tissue-specific gene expression. It can act as a positive as well as a negative regulator of cellular differentiation depending on the cell type and the genes studied. Regulation by ECM is closely interrelated with the action of other regulators of cellular function, such as growth factors and hormones. Matrigel supports the growth and development of several different multicellular colonies from mammary organoids and from monodispersed epithelial cells in culture. Several types of colonies are observed including stellate colonies, duct-like structures, two- and three-dimensional web structures, squamous organoids, and lobulo-duct colonies. Organoids have the greatest proliferative potential and formation of multi-cellular structures. Phase contrast micrographs demonstrate extensive intracellular lipid accumulation within the web structures and some of duct-like colonies. At the immunocytochemical and electron micrograph level, casein proteins are predominantly localized near the apical surface of the cells or in the lumen of duct-like or lobulo-duct colonies. Squamous colonies are comprised of several layers of squamous epithelium surrounding keratin pearls as is typical fo squamous metaplasia(SM). All-trans retinoic acid(RA) inhibits the growth of SM. The frequency of lobulo-ductal colony formation increased with the augmentation of RA concentration in these culture conditions. The current study models could provide powerful tools not only for understanding cell growth and differentiation of epithelial cells, but also for the isolation and characterization of mammary clonogenic stem cells.

  • PDF

Expression Analyses Revealed Thymic Stromal Co-Transporter/Slc46A2 Is in Stem Cell Populations and Is a Putative Tumor Suppressor

  • Kim, Ki Yeon;Lee, Gwanghee;Yoon, Minsang;Cho, Eun Hye;Park, Chan-Sik;Kim, Moon Gyo
    • Molecules and Cells
    • /
    • v.38 no.6
    • /
    • pp.548-561
    • /
    • 2015
  • By combining conventional single cell analysis with flow cytometry and public database searches with bioinformatics tools, we extended the expression profiling of thymic stromal cotransporter (TSCOT), Slc46A2/Ly110, that was shown to be expressed in bipotent precursor and cortical thymic epithelial cells. Genome scale analysis verified TSCOT expression in thymic tissue- and cell type- specific fashion and is also expressed in some other epithelial tissues including skin and lung. Coexpression profiling with genes, Foxn1 and Hoxa3, revealed the role of TSCOT during the organogenesis. TSCOT expression was detected in all thymic epithelial cells (TECs), but not in the $CD31^+$endothelial cell lineage in fetal thymus. In addition, ABC transporter-dependent side population and Sca-$1^+$ fetal TEC populations both contain TSCOT-expressing cells, indicating TEC stem cells express TSCOT. TSCOT expression was identified as early as in differentiating embryonic stem cells. TSCOT expression is not under the control of Foxn1 since TSCOT is present in the thymic rudiment of nude mice. By searching variations in the expression levels, TSCOT is positively associated with Grhl3 and Irf6. Cytokines such as IL1b, IL22 and IL24 are the potential regulators of the TSCOT expression. Surprisingly, we found TSCOT expression in the lung is diminished in lung cancers, suggesting TSCOT may be involved in the suppression of lung tumor development. Based on these results, a model for TEC differentiation from the stem cells was proposed in context of multiple epithelial organ formation.

Primary Cilium by Polyinosinic:Polycytidylic Acid Regulates the Regenerative Migration of Beas-2B Bronchial Epithelial Cells

  • Gweon, Bomi;Jang, Tae-Kyu;Thuy, Pham Xuan;Moon, Eun-Yi
    • Biomolecules & Therapeutics
    • /
    • v.30 no.2
    • /
    • pp.170-178
    • /
    • 2022
  • The airway epithelium is equipped with the ability to resist respiratory disease development and airway damage, including the migration of airway epithelial cells and the activation of TLR3, which recognizes double-stranded (ds) RNA. Primary cilia on airway epithelial cells are involved in the cell cycle and cell differentiation and repair. In this study, we used Beas-2B human bronchial epithelial cells to investigate the effects of the TLR3 agonist polyinosinic:polycytidylic acid [Poly(I:C)] on airway cell migration and primary cilia (PC) formation. PC formation increased in cells incubated under serum deprivation. Migration was faster in Beas-2B cells pretreated with Poly(I:C) than in control cells, as judged by a wound healing assay, single-cell path tracking, and a Transwell migration assay. No changes in cell migration were observed when the cells were incubated in conditioned medium from Poly(I:C)-treated cells. PC formation was enhanced by Poly(I:C) treatment, but was reduced when the cells were exposed to the ciliogenesis inhibitor ciliobrevin A (CilioA). The inhibition of Beas-2B cell migration by CilioA was also assessed and a slight decrease in ciliogenesis was detected in SARS-CoV-2 spike protein (SP)-treated Beas-2B cells overexpressing ACE2 compared to control cells. Cell migration was decreased by SP but restored by Poly(I:C) treatment. Taken together, our results demonstrate that impaired migration by SP-treated cells can be attenuated by Poly(I:C) treatment, thus increasing airway cell migration through the regulation of ciliogenesis.

Increased Expression of Epithelial Cell Adhesion Molecule (EpCAM) in Rat Hepatic Tumors Induced by Diethylnitrosamine

  • Kang, Jin Seok
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.8
    • /
    • pp.3627-3630
    • /
    • 2012
  • The epithelial cell adhesion molecule (EpCAM) is a pan-epithelial differentiation antigen that is expressed on almost all carcinomas. However, a role in rat liver carcinogenesis has never been reported previously. Thus, its expression was investigated herein in rat liver tumors induced by diethylnitrosamine (DEN). Twenty male 5-week-old F344 rats were used in this experiment. Mini-osmotic pumps containing doses of 47.5 mg of DEN were inserted into the abdominal cavity of each animal to initiate liver carcinogenesis. All animals were sacrificed at 26 weeks after DEN treatment. At necropsy, hepatic masses were processed for histopathological examination, which revealed forty-four hepatocellular adenomas (HCAs) and twenty hepatocellular carcinomas (HCC). Tumors were immunohistochemically analyzed for EpCAM, proliferating cell nuclear antigen (PCNA) and co-localization of the two. EpCAM expression was mainly detected in hepatic tumor cells, showing a cytoplasmic staining pattern. However, expression was also slightly observed in normally-appearing surrounding hepatic cells. PCNA expression was highly detected in tumor cells, showing nuclear staining. Double staining of EpCAM and PCNA in tumors showed many cells with co-localization. Taken together, EpCAM and PCNA expression were increased in DEN-induced tumors and many tumor cells showed co-expression. It is suggested that EpCAM may increase during DEN-induced tumors, possibly associated with cell proliferation.

Anterior Mediastinal Tumor

  • Lee, Jae-Kyo
    • Journal of Yeungnam Medical Science
    • /
    • v.27 no.2
    • /
    • pp.98-104
    • /
    • 2010
  • Primary anterior mediastinal neoplasms comprise a diverse group of tumors and account for 50% of all mediastinal masses. Thymic epithelial neoplasm are most common and classified into thymoma, invasive thymoma, and thymic carcinoma. Neuroendocrine differentiation of thymic epithelial neoplasm are rare malignancies. Germ cell tumor (GCT) is second most common anterior mediastinal tumor and most of them are mature cystic teratoma. Malignant mediastinal GCT are rare than benign. Primary thoracic lymphoma is rare than thoracic involvement of systemic lymphoma and most common location of primary thoracic lymphoma is anterior mediastinum. The clinical and radiologic appearance of the most common masses are reviewed.

  • PDF

Transforming Growth Factor-$\beta$ (TGF-$\beta$) Induces Invasion and Migration of MCF10A Human Breast Epithelial Cells

  • Kim, Eun-Sook;Kim, Mi-Sung;Aree Moon
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2003.10b
    • /
    • pp.142-142
    • /
    • 2003
  • Transforming growth factor (TGF)-${\beta}$, a hormonally active polypeptide found in normal and transformed tissue, is a potent regulator of cell growth and differentiation. In this study, we examined the effect of TGF-${\beta}$ on invasion and motility of MCF10A human breast epithelial cells. TGF-${\beta}$ induced migration and invasive phenotype of the parental MCF10A cells in a dose-dependent manner.(omitted)

  • PDF

Transforming Growth Factor-$\beta$ (TGF)-$\beta$, Induces Invasion and Migration of MCF10A Human Breast Epithelial Cells

  • Kim, Eun-Sook;Kim, Mi-Sung;Moon, Aree
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.165.1-165.1
    • /
    • 2003
  • Transforming growth factor (TGF)-$\beta$, a hormonally active polypeptide found in normal and transformed tissue, is a potent regulator of cell growth and differentiation. In this study, we examined the effect of TGF-$\beta$ on invasion and motility of MCF10A human breast epithelial cells. TGF-$\beta$-induced migration and invasive phenotype of the parental MCF10A cells in a dose-dependent manner. Activity of MMP-2 promoter was increased by TGF-b, suggesting that the TGF-$\beta$-induced invasive phenotype may possibly be mediated by MMP-2 rather than MMP-9. (omitted)

  • PDF