• 제목/요약/키워드: Epitaxial films

검색결과 353건 처리시간 0.024초

Control of a- and c-plane Preferential Orientations of p-type CuCrO2 Thin Films

  • 김세윤;성상윤;조광민;홍효기;김정주;이준형;허영우
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.119-120
    • /
    • 2011
  • Kawazoe는 1997년 p-type TOS를 만들기 위해서는 3가지가 충족되어야 한다고 언급한바 있다. 첫 번째, 가시광영역에서 투명하기 위해서 cation의 d10s0이 가득 차야 한다. 가득 차지 않은 d10 shell은 광 흡수가 가능하여 투과도를 떨어뜨린다. N-type을 예로 들어 ZnO, TiO, In2O3가 각각 Zn2+, Ti4+, In3+가 되어 d shell을 가득 차게 만드는 것을 볼 수 있다. 두 번째, cation d10s0 shell은 산소의 2p shell과 overlap 되어야 한다. 이 valence band는 홀 전도를 더욱 좋게 한다. 예를 들어 Cu1+(3d), Ag1+(4d)가 해당한다. 세 번째로, 양이온과 산소간의 공유결합을 강하게 하기 위해서 결정학적 구조는 매우 중요하다. Delafossite 구조는 산소가 pseudo-tetrahedral 구조로서 공유결합에 유리하다. 이러한 환경은 O2- (2p6)을 형성하고 홀의 이동도를 증가시킨다. 예를 들어 Cu2O의 경우 앞의 2가지를 만족시키지만 광학적 특성에서 좋지 않다. 그 이유가 3번째 언급한 결정학적인 요인에 있다. 결정 계의 환경은 Cu2O를 따라가면서 3차원적인 연결을 2차원적으로 변형된 delafossite 구조에서는 quantum well이 형성되어 band gap이 커진다. 본 연구에서는 전기적 이방성을 가지고 있는 delafossite CuCrO2 상에서 우선배향을 일으키는 인자 중 기판을 변화시켜 실험을 진행하였다. 결과적으로 기판변화를 통해 우선배향조절이 가능하였으며 CuCrO2 박막을 시켰으며, 결정방향에 따른 전기적 물성의 이방성에 관한 연구는 계속 진행 중에 있다. c-plane sapphire 기판위에는 [00l]로 성장하는 반면, c-plane STO 기판 위에는 [015] 방향으로 성장하는 것을 확인하였다. 이러한 원인은 기판과 증착되는 박막간의 mismatch를 최소화 하여 strain을 줄이고, 계면에서의 Broken boning 수를 줄여 계면에너지를 낮추는 방법이기 때문일 것으로 예상된다. C-plane sapphire 기판위에 증착될 경우 증착온도가 증가함에 따라 c-축으로의 성장이 온전해지며 이에 따라 캐리어농도의 감소와 모빌리티의 증가가 급격하게 변하는 것을 확인할 수 있다. 반면 c-plane STO 기판에서는 증착온도에 따른 박막의 배향변화가 없으며 전기적 물성 변화 또한 비교적 작은 것을 간접적으로 확인하였다.

  • PDF

고상 에피택시에 의한 초박막 $CoSi_2$ 형성과 $Si/epi-CoSi_2/Si$(111)의 이중헤테로 에피택셜 성장 (Formation of $CoSi_2$ Film and Double Heteroepitaxial Growth of $Si/epi-CoSi_2/Si$(111) by Solid Phase Epitaxy)

  • 최치규;강민성;문종;현동걸;김건호;이정용
    • 한국재료학회지
    • /
    • 제8권2호
    • /
    • pp.165-172
    • /
    • 1998
  • 초고진공에서 in situ 고상 에피택셜 방법으로 Si(111)기판 위에 에피택셜 $CoSi_2$ 초박막과 $Si/epi-CoSi_2/Si$(111) 의 이중 이종에피택셜 구조를 성장 시켰다. 2-MeV $^4He^{++}$ 이온 후방산란 분광기와 X-선 회절분석기 및 고분해능 투과전자 현미경을 이용하여 성장된 $CoSi_2$$Si/epi-CoSi_2/Si$(111)의 상, 조성, 결정성 그리고 계면의 미세구조를 조사하였다. 실온에서 증착된 Co 박막은 texture 구조를 갖는 Stransky-Krastanov 성장 모드를 나타내었다. 실온에서 Si(111)-$7\times{7}$ 기판 위에 Co를 $50\AA$ 증착한 후 $700^{\circ}C$로 10분간 in situ 열처리했을 때 초박막 A-type $CoSi_2$상이 성장되었고, 정합상관계는 $CoSi_2$[110]//Si[110] and $CoSi_2$(002)//Si(002)였으며, 편의각은 없었다. A-type $CoSi_2$/Si(111)계면은 평활하고 coherent 하였다. 양질의 epi-Si/epi-$CoSi_2$(A-type)/Si(111)구조는 Co/Si(111)계를 $700^{\circ}C$로 10분간 in situ로 열처리한 후 기판을 $500^{\circ}C$로 유지하면서 Si을 증착하였을 때 형성되었다.

  • PDF

a-SiOx:H/c-Si 구조를 통한 향상된 밴드 오프셋과 터널링에 대한 전기적 특성 고찰 (Electrical Properties for Enhanced Band Offset and Tunneling with a-SiOx:H/a-si Structure)

  • 김홍래;팜뒤퐁;오동현;박소민;라벨로 마테우스;김영국;이준신
    • 한국전기전자재료학회논문지
    • /
    • 제34권4호
    • /
    • pp.251-255
    • /
    • 2021
  • a-Si is commonly considered as a primary candidate for the formation of passivation layer in heterojunction (HIT) solar cells. However, there are some problems when using this material such as significant losses due to recombination and parasitic absorption. To reduce these problems, a wide bandgap material is needed. A wide bandgap has a positive influence on effective transmittance, reduction of the parasitic absorption, and prevention of unnecessary epitaxial growth. In this paper, the adoption of a-SiOx:H as the intrinsic layer was discussed. To increase lifetime and conductivity, oxygen concentration control is crucial because it is correlated with the thickness, bonding defect, interface density (Dit), and band offset. A thick oxygen-rich layer causes the lifetime and the implied open-circuit voltage to drop. Furthermore the thicker the layer gets, the more free hydrogen atoms are etched in thin films, which worsens the passivation quality and the efficiency of solar cells. Previous studies revealed that the lifetime and the implied voltage decreased when the a-SiOx thickness went beyond around 9 nm. In addition to this, oxygen acted as a defect in the intrinsic layer. The Dit increased up to an oxygen rate on the order of 8%. Beyond 8%, the Dit was constant. By controlling the oxygen concentration properly and achieving a thin layer, high-efficiency HIT solar cells can be fabricated.