• Title/Summary/Keyword: Epitaxial films

Search Result 353, Processing Time 0.033 seconds

Development of Fluorine-free MOD Precursor Solution for fabricating REBCO Superconducting Films (REBCO 초전도 박막제조를 위한 Fluorine-free MOD 전구체 용액 개발)

  • Kim, Byeong-Joo;Lim, Sun-Weon;Kim, Ho-Jin;Hong, Gye-Won;Lee, Hee-Gyoun
    • Progress in Superconductivity
    • /
    • v.7 no.2
    • /
    • pp.152-157
    • /
    • 2006
  • New precursor solution with dichloroacetic acid (DCA) was developed for fabricating high $J_c$ REBCO film. DCA based-precursor solution was coated on $LaAlO_3$(001) substrate by dip coating method. Processing parameters such as oxygen partial pressure, water vapor, ramping rate and pyrolysis temperature were controlled in order to obtain a good epitaxial film. The film with thickness of 0.5 micrometer was obtained by single coating and no crack was observed at calcined films. Oxygen partial pressure was controlled in the range of $100{\sim}1,000$ ppm and conversion heat treatment was carried out at the temperature range of $705-765^{\circ}C$. A critical transition temperature ($T_c$) of 90 K and a critical transport current density ($J_c$) of $>0.5\;MA/cm^2$ (77 K and self-field) were obtained for the GdBCO film. It is thought that fluorine-free MOD solution using DCA is promising precursor solution for fabricating high quality REBCO films.

  • PDF

Atomic-scale Controlled Epitaxial Growth and Characterization of Oxide Thin Films

  • Yang, G.Z.;Lu, H.B.;Chen, F.;Zhao, T.;Chen, Z.H.
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2001.02a
    • /
    • pp.6-11
    • /
    • 2001
  • More than ten kinds of oxide thin films and their heterostructure have been successfully fabricated on SrTiO$_3$(001) substrates by laser molecular beam epitaxy (laser MBE). Measurements of atomic force microscopy (AFM), high-resolution transmission electron microscopy (HRTEM) and X-ray small-angle reflectivity reveal that the surfaces and interfaces are atom-level-smooth. The unit cell layers and the lattice structure are perfect. The electrical and optical properties of BaTiO$_3$-x thin films and BaTiO$_3$/SrTiO$_3$ (BTO/STO) superlattices were examined. The all-perovskite oxide P-N junctions have been successfully fabricated and the better I-V curves were observed.

  • PDF

The Effect of Si Underlayer on the Magnetic Properties and Crystallographic Orientatation of CoCr(Mo) Thin Film (CoCr(Mo) 박막의 자기적 특성 및 미세구조에 미치는 Si 하지층의 영향)

  • 이호섭;남인탁
    • Journal of the Korean Magnetics Society
    • /
    • v.9 no.5
    • /
    • pp.256-262
    • /
    • 1999
  • Sputter deposited CoCr(Mo)/Si film were studied with emphasis on the correlation between magnetic properties and crystallographic orientation. The perpendicular coercivities of CoCr films decreased with Si underlayer thickness, whereas those of CoCrMo films increased with Si underlayer thickness. It has been explained that additions of the larger atomic radius Mo atoms in CoCr films impedes crystal growth resulting in a decrease in grain size, thus this small grain size may induce high perpendicular coercivity. The c-axis alignment of CoCrMo film was improved due to addition of 2at.%Mo. It means CoCrMo layer grow self-epitaxial directly from orientation and structure of Si underlayer when the main layer grow on underlayer.

  • PDF

keV SURFACE MODIFICATION AND THIN FILM GROWTH

  • Koh, Seok-Keun;Choi, Won-Kook;Youn, Young-Soo;Song, Seok-Kyun;Cho, Jun-Sik;Kim, Ki-Hwan;Jung, Hyung-Jin
    • Journal of the Korean Vacuum Society
    • /
    • v.4 no.S2
    • /
    • pp.95-99
    • /
    • 1995
  • keV ion beam irradiatin for surface modification and thin film growth have been discussed. keV ion beam irradiation in reactive gas environment has been developed for improving wettability of polymer, and for enhancing adhesion to metal film, and adventages of the method have been reviewed. An epitaxial Cu film on Si(100) substrate has been grown by ionized cluster beam and changes of crystallinity and surface roughness have been discussed. Stoichiometric $SnO_2$ films on Si(100) and glass have been grown by a hybrid ion beam Deposition(2 metal ion sources+1 gas ion source), and nonstoichiometric $SnO_2$ films are controlled by various deposition conditions in the HIB. Surface modification for polymer by kev ion irradiation have been developed. Wetting angle of water to PC has been changed from 68 degree to 49 degree with $Ar^+$ irradiation and to 8 degree with $Ar^+$ irradiation and the oxygen environment. Change of surface phenomena in a keV ion beam and characteristics of the grown films are suggested.

  • PDF

Microstructural Characteristics of III-Nitride Layers Grown on Si(110) Substrate by Molecular Beam Epitaxy

  • Kim, Young Heon;Ahn, Sang Jung;Noh, Young-Kyun;Oh, Jae-Eung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.327.1-327.1
    • /
    • 2014
  • Nitrides-on-silicon structures are considered to be an excellent candidate for unique design architectures and creating devices for high-power applications. Therefore, a lot of effort has been concentrating on growing high-quality III-nitrides on Si substrates, mostly Si(111) and Si(001) substrates. However, there are several fundamental problems in the growth of nitride compound semiconductors on silicon. First, the large difference in lattice constants and thermal expansion coefficients will lead to misfit dislocation and stress in the epitaxial films. Second, the growth of polar compounds on a non-polar substrate can lead to antiphase domains or other defective structures. Even though the lattice mismatches are reached to 16.9 % to GaN and 19 % to AlN and a number of dislocations are originated, Si(111) has been selected as the substrate for the epitaxial growth of nitrides because it is always favored due to its three-fold symmetry at the surface, which gives a good rotational matching for the six-fold symmetry of the wurtzite structure of nitrides. Also, Si(001) has been used for the growth of nitrides due to a possible integration of nitride devices with silicon technology despite a four-fold symmetry and a surface reconstruction. Moreover, Si(110), one of surface orientations used in the silicon technology, begins to attract attention as a substrate for the epitaxial growth of nitrides due to an interesting interface structure. In this system, the close lattice match along the [-1100]AlN/[001]Si direction promotes the faster growth along a particular crystal orientation. However, there are insufficient until now on the studies for the growth of nitride compound semiconductors on Si(110) substrate from a microstructural point of view. In this work, the microstructural properties of nitride thin layers grown on Si(110) have been characterized using various TEM techniques. The main purpose of this study was to understand the atomic structure and the strain behavior of III-nitrides grown on Si(110) substrate by molecular beam epitaxy (MBE). Insight gained at the microscopic level regarding how thin layer grows at the interface is essential for the growth of high quality thin films for various applications.

  • PDF

Annealing under low oxygen partial pressure for crystal growth of BaTiO$_3 $thin films prepared by coating-pyrolysis process (코딩-열분해법에 의해 제조한 BaTiO$_3 $ 박막의 결정 성장을 위한 낮은 산소 분압에서의 열처리)

  • Kim, Seung-Won
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.10 no.2
    • /
    • pp.111-115
    • /
    • 2000
  • $BaTIO_3$ thin films were prepared on (100) $BaTIO_3$ substrates by coating- pyrolysis process using metal-organic compounds of Ba and Ti. The amorphous films prefired at $450^{\circ}C$were crystallized above $700^{\circ}C$ under oxygen partial pressure of $2\times 10^{-4}$. The lattice parameters of the perpendicular axis for the $BaTIO_3$ thin films heat-treated below $800^{\circ}C$ were closer to a value of cubic $BaTIO_3$, whereas those above $800^{\circ}C$ were closer to a value of tetragonal BaTiG. The results of XRD P scan and pole-figure analyses indicated that BaTiO, thin films have an epitaxial relationship with the $SrTiO_3$ substrates. The $BaTIO_3$thin films annealed at$800^{\circ}C$ showed the surface with island-like grains about 0.4$mu \textrm{m}$ and the cross section of 0.8 $mu \textrm{m}$ thickness with granular grains.

  • PDF

Temperature Dependence of Magnetic Properties of YIG films Grown by Solid Phase Epitaxy (고상에피택시 YIG 박막의 온도에 따른 자기특성)

  • Jang, Pyug-Woo;Kim, Jong-Ryul
    • Journal of the Korean Magnetics Society
    • /
    • v.15 no.1
    • /
    • pp.25-29
    • /
    • 2005
  • Magnetic properties of YIG films grown by solid phase epitaxy (SPE) was measured as a function of temperature with focus on magneto-crystalline and perpendicular magnetic anisotropy. Perpendicular magnetic anisotropy was not induced in the SPE YIG films annealed at low temperature by relaxing residual stress through formation of dislocation. On the contrary the films annealed at high temperature showed perpendicular magnetic anisotropy which shows very low density of dislocation. Perpendicular magnetic anisotropy field decreased linearly up to a high temperature of $230^{\circ}C$ above which magneto-crystalline anisotropy disappeared. Coercivity also decreased linearly with temperature up 세 $230^{\circ}C$. Magneto-crystalline anisotropy of perpendicular anisotropy induced epitaxial (111) YIG films can be measured using $H_k=4K_1/3M_s$. Temperature behavior of initial susceptibility can be successfully explained by Hopkinson effects. Curie temperature of YIG films grown on GGG substrate with high paramagnetic susceptibility can be easily measured using the results.

Growth and Characterization of Epitaxial YIG Films for Microwave Devices (마이크로파 소자용 에피틱시 YIG막의 성장과 특성)

  • 김덕실;조재경
    • Journal of the Korean Magnetics Society
    • /
    • v.9 no.2
    • /
    • pp.91-97
    • /
    • 1999
  • YIG $(Y_3Fe_5O_{12})$ films with 4~80 ${\mu}{\textrm}{m}$ thickness were epitaxially grown on GGG $(Gd_3Ga_5O_{12})$ substrates by LPE (liquid phase epitaxy) techniques. Using various melts having different chemical composition the growth temperature was varied as a parameter. Growth rate, surface morphology, chemical composition, lattice constant, saturation magnetization, and magnetic resonance of the films were investigated. Lattice mismatch between the substrate and film Δa, saturation magnetization, and magnetic resonance line width ΔH increased, decreased, and increased, respectively, as undercooling temperature ΔT increased. The films grown by using the melt with larger R$_1$and smaller R$_3$had smaller ΔH. The major origin of the increase of ΔH was the increase of Δa. It is considered that the magnetic field in the film became locally inhomogeneous with the increase of Δa due to the increase of inhomogenity in stress distribution to the film depth direction. Therefore, in order to grow YIG films with small microwave loss it is necessary to grow films at small ΔT using the melt with large R$_1$and small R$_3$resulting in a small Δa.

  • PDF

Orientation control of $CuCrO_2$ films on different substrate by PLD (기판에 따른 p-type $CuCrO_2$ 박막의 성장방향변화)

  • Kim, Se-Yun;Sung, Sang-Yun;Jo, Kwang-Min;Hong, Hyo-Ki;Lee, Joon-Hyung;Kim, Jeong-Joo;Heo, Young-Woo
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2011.05a
    • /
    • pp.142-142
    • /
    • 2011
  • Epitaxial $CuCrO_2$ thin films have been grown on single crystal substrate of c-plane $Al_2O_3$, $SrTiO_3$, YSZ and Quarts by laser ablation of a $CuCrO_2$ target using 266nm radiation from a Nd:YAG laser. X-ray measurements indicate that the $CuCrO_2$ grows epitaxially on all substrate, with its orientation dependent on the kinds of substrates. Most of the layer were polycrystalline with (001), (015) and random as the dominant surface orientation on c-plane YSZ, $SrTiO_3$ and quarts substrate, respectively. (001) orientated $CuCrO_2$ grows on C-plane $Al_2O_3$ and YSZ substrate, (015) orientated $CuCrO_2$ films are found on c-plane $SrTiO_3$ substrate and random orientated $CuCrO_2$ films grows on quarts substrate. These data are compared with the in-plane orientation and the mismatch of the $CuCrO_2$ and each substrate lattices in an attempt to relate the preferred orientation to the plane of the sapphire on which it is grown. Further characterization show that the grain size of the films increases for a substrate temperature increase, whereas the electrical properties of $CuCrO_2$ thin films depend upon their crystalline orientation.

  • PDF

Development of Spontaneous Polarization of Epitaxial Iron-Excess Gallium Ferrite Thin Films

  • Oh, S.H.;Shin, R.H.;Lee, J.H.;Jo, W.;Lefevre, C.;Roulland, F.;Thomasson, A.;Meny, C.;Viart, N.
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2012.05a
    • /
    • pp.121-122
    • /
    • 2012
  • Iron-excess gallium ferrite, $Ga_{0.6}Fe_{1.4}O_3$ (GFO), is known to have room-temperature ferromagnetic phases and potentially exhibit ferroelectricity as well [1]. But, leaky polarization-electric field (PE) hysteresis curves of the GFO thin film are hurdle to prove its spontaneous polarization, in other words, ferroelecticity. One of the reasons that the GFO films have leaky PE hysteresis loop is carrier hopping between $Fe^{2+}$ and $Fe^{3+}$ sites due to oxygen deficiency. We focus on reducing conducting current by substituting divalent cations at $Fe^{2+}$ sites. GFO thin films were grown epitaxially along b-axis normal to $SrRuO_3/SrTiO_3$ (111) substrates by pulsed laser deposition. Current density of the ion-substituted GFO thin films was reduced by $10^3$ or more. Ferroelectric properties of the ion-substituted GFO thin films were measured using macroscopic and microscopic schemes. In particular, local ferroelectric properties of the GFO thin films were exhibited and their remnant polarization and piezoelectric d33 coefficient were obtained.

  • PDF