• Title/Summary/Keyword: Epipremnum aureum

Search Result 6, Processing Time 0.023 seconds

The Effects of Ozone on Photosynthesis, Antioxidative Enzyme Activity and Leaf Anatomical Response in the Indoor Plants and Japanese Red Pine (실내식물과 소나무의 오존에 대한 광합성 능력, 항산화 효소의 활성, 해부학적 반응)

  • Lee, Ju Young;Je, Sun Mi;Lee, Seoung Han;Woo, Su-Young
    • Journal of Korean Society of Forest Science
    • /
    • v.102 no.4
    • /
    • pp.601-607
    • /
    • 2013
  • The purpose of this study was to identify the effects of ozone pollution on the one woody species and two indoor plants in controlled environment. Pinus densiflora, Spathiphyllum patinii and Epipremnum aureum seedlings were exposed in both control and ozone chambers to investigate photosynthetic rate, water use efficiency, antioxidative enzyme activities such as GR(Glutathione reductase) and APX(Ascorbate peroxidase) activity and leaf anatomical response. Ozone was fumigated 8 hours for a day with 30 ppb concentration for 50 days. Pinus densiflora seedlings showed no significant difference on photosynthetic rate, water use efficiency, antioxidant enzyme activity during ozone exposure. Ozone concentration (30 ppb in this study) is not high enough to generate ozone damage on Pinus densiflora species. In contrast, ozone generally altered photosynthetic rate, antioxidant enzyme (especially GR) activity and leaf anatomy in two indoor species (Spathiphyllum patinii and Epipremnum aureum) exposed in ozone chamber were significantly differ from those of control in every measurement. These data suggest that two indoor species(Spathiphyllum patinii and Epipremnum aureum) are more sensitive to ozone than Pinus densiflora.

Plant Growth Responses and Indoor Air Quality Purification in a Wall-typed Botanical Biofiltration System (벽면형 식물바이오필터 내 식물 생육 및 실내공기질 정화)

  • Jung, Seul Ki;Chun, Man Young;Lee, Chang Hee
    • Korean Journal of Plant Resources
    • /
    • v.28 no.5
    • /
    • pp.665-674
    • /
    • 2015
  • The final goal of this research is to develop a botanical biofiltration system, which combines green interior, biofiltering, and automatic irrigation, which can purify indoor air pollutants according to indoor space and the size of biofilter. The biofilter used in this experiment was designed as an integral form of water metering pump, water tank, blower, humidifier, and multi-level planting space in order to be more suitable for indoor space utilization. This study was performed to compare indoor air quality between the space adjacent to a botanical biofilter and the space away from the biofilter (control) without generation of artificial indoor air pollutants, and to evaluate plant growth depending on multiple floors within the biofilter. Each concentration of indoor air pollutants such as TVOCs, monoxide, and dioxide in the space treated with the biofilter was lower than that of control. Dracaena sanderiana ‘Vitoria’ and Epipremnum aureum ‘N Joy’ also showed normal growth responses regardless of multiple floors within the biofilter. Hence, it was confirmed that the wall-typed botanical biofilter suitable for indoor plants was effective for indoor air purification.

Effect of Applied Substrates on Foliage Growth in Hydro-Culture (수경재배 시 첨가매질이 관엽식물의 생장에 미치는 영향)

  • Jang, Hye-Sook;Lee, Sang-Gyu;Moon, Ji-Hye;Pak, Chun-Ho
    • Journal of Bio-Environment Control
    • /
    • v.18 no.4
    • /
    • pp.460-467
    • /
    • 2009
  • This research was conducted for the purpose of investigating the influence substrates addition such as germanium or Granite porphyry gravel have on the growth of foliage, on the inorganic compositions of leaves as well as on root activity, in order to discover effective means of introducing plants to the indoors. Syngonium podophyllum, Dracaena sanderiana, Epipremnum aureum and Hedera helix were used as study subjects to which soil (mixed top-soil: Sunshine Mix No. 2, USA), tap water, tap water with germanium (300g), tap water with Granite porphyry gravel (300g) were added respectively and formulated. Studies on growth variations according to substrates addition indicate that growth of Syngonium podophyllum was most sluggish under tap water only treatment. Plant growth was most active under geranium-gravel treatment. In the case of Dracaena sanderiana, treatment of substrates addition had no meaningful influence on plant growth. However, the growth of Epipremnum aureum and Hedera helix was also shown to be most active under geranium-gravel treatment. Geranium-gravel treatment was shown to be particularly beneficial for root length, number of roots and dry weight. Root activity was analyzed on ten day intervals and there was discernable difference in the root activity of all the plants according to the varying treatments. In the case of the Syngonium podophyllum, the root activity was sluggish in all three types of treatment on the 10th day but improved gradually. On the 30th to the 50th day of the experiment, the root activity was found to be best under the Granite porphyry gravel treatment. In the case of the Dracaena sanderiana, the root activity was most active under the geranium-gravel treatment from the 10th to the 40th day but deteriorated from the 50th day. However, there was no significant different in all three treatments from the 60th day onwards. Analysis of the inorganic components of the leaves indicates that, while Ca and Mg were higher in the geranium than in the Granite porphyry gravel, they do not directly influence the content of inorganic components in the leaves. The results indicate that Epipremnum aureum and Hedera helix grow better under hydro-culture than when grown in soil and growth under hydro-culture is shown to increase when germanium is added to tap water.

Analysis of Growth Indicators of Applied Plants by AHU(Air Handling Unit)-linking with Artificial Soil-based Vegetation Bio-filters (인공토양기반 식생바이오필터의 AHU(Air Handling Unit) 연계를 통한 적용식물의 생육지표 분석)

  • Kim, Tae-Han;Lee, So-Dam;An, Byung-Ryul
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.21 no.3
    • /
    • pp.99-110
    • /
    • 2018
  • Compared to yellow dust coming from China or particulate matter created naturally in spring due to Total Suspended Particulate(TSP), particulate matter in winter season have much more serious effect on human body as they penetrate cell membranes. Although such particulate matter are becoming a social issue, there are no concrete plans on how to reduce them. Air-purifying plants are limited in maintaining the indoor air quality of large area because it is usually difficult to quantify their performance. In order to improve this, a bio-filter that can be connected to air conditioner is suggested as an option. This study seeks to improve air conditioning model-based monitoring method for bio-filters from prior studies and objectify correlations between applied vegetation and growing environment into quantitative indicators. By doing so, this study seeks to provide criteria on plants applied to artificial soil-based vegetation bio-filters and basic information to set air-conditioning features. The study results confirmed significant tendency on the growing stability of each purifying plant in mechanical air-conditioning environment. Among three models selected for bio-filter vegetation models, epipremnum aureum showed high performance in quantitative indicators, including soil moisture, EC, and leaf temperature, etc., indicating that it would assure the highest growing stability in this test air-conditioning environment.

The Indoor Air Purification System Using LED and Fan for Epipremnum aureum (스킨답서스에 LED와 Fan을 이용한 실내공기정화 시스템)

  • Kim, Taehyun;Park, Junmo;Kim, Soochan
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.19 no.4
    • /
    • pp.167-173
    • /
    • 2018
  • We propose an air purification system that utilizes aerial plant parts and root zone of indoor plants where light is insufficient and air circulation is bad. In order to maximize the air purification effect of the plant, the aerial plant parts illuminates mixed light combining blue and green LED and CRI(Color Rendering Index) LEDs close to natural light, respectively. And the root zone was forcibly circulated by the fan to use the soil as a filter. The indoor air purification system combined with the light source and the fan removed most polluted air in the shortest. In the case of mixed light and CRI LEDs of indoor air purification system, fine dust decreased by 14%, 14.2%, and TVOC(Total volatile organic compounds) decreased by 7.5% and 9.4%, respectively. In the experiment in which the fan was operated for 15 minutes, the TVOC decreased to 97.8%. The photosynthesis of the plant and the use of soil as a filter were able to purify polluted air in a short time. And the fan's temporary operation gave the similar effect of continuous operation.

Changes in Growth Characteristics of Seven Foliage Plants Grown in an Indoor Bio-Wall System Depending on Irrigation Cycle

  • Han, Cheolgu;Shim, Ie-Sung
    • Journal of People, Plants, and Environment
    • /
    • v.23 no.2
    • /
    • pp.179-189
    • /
    • 2020
  • In order to increase the indoor air purification effect of plants, plants need to be placed on 5-10% of indoor spaces. To increase the density and utilization of plants in indoor spaces, studies on bio-wall, a vertical green wall system, have been recently conducted. The purpose of this study was to investigate the growth characteristics of 7 indoor plants introduced to the system and their rooting zones at different irrigation cycles. This study was conducted to investigate a proper irrigation cycle for the continuous maintenance of bio-wall systems. The conditions of their growth environment were maintained as follows: light intensity, 20-50 μmol·m-2·s-1 PPFD; and temperature, 20 - 25℃. For fertilization, Hyponex diluted with water at the ratio of 1:1,000 was supplied to plants. Irrigation was treated at intervals of 1, 3, 5, and 7 days for 1 hour at a time. As a result, there was no significant difference in the growth of plants between different irrigation cycles. Dieffenbachia 'Marianne' showed a significant decrease in the number of leaves at the irrigation cycle of 7 days. In addition, the chlorophyll content was relatively low at the irrigation cycle of 7 days. In terms of the color of leaves, a decrease in L value and b value and an increase in a value were observed, resulting in changes in brightness and color. Ardisia pusilla 'Variegata' showed a slightly higher photosynthetic activity and stomatal conductance when it was watered every day and once per 5 days, while Epipremnum aureum showed a relatively higher photosynthetic activity and stomatal conductance at the irrigation cycle of 3 days. In the case of root activity, it was found that the longer irrigation cycle, the higher root activity compared to daily irrigation. The development of roots of Peperomia clusiifolia was promoted by watering at long intervals. However, in the case of Aglaonema 'Siam-Aurora', the total number of roots decreased at the interval of 7 days. In conclusion, a proper irrigation cycle for the sustainable maintenance of vertical bio-wall systems seems to be 3 days.