• 제목/요약/키워드: Epigenetic regulation

검색결과 139건 처리시간 0.029초

Epigenetic Regulation in the Brain after Spinal Cord Injury : A Comparative Study

  • Park, Bit-Na-Ri;Kim, Seok Won;Cho, Sung-Rae;Lee, Ji Yong;Lee, Young-Hee;Kim, Sung-Hoon
    • Journal of Korean Neurosurgical Society
    • /
    • 제53권6호
    • /
    • pp.337-341
    • /
    • 2013
  • Objective : After spinal cord injury (SCI), functional and structural reorganization occurs at multiple levels of brain including motor cortex. However, the underlying mechanism still remains unclear. The current study was performed to investigate the alterations in the expression of the main regulators of neuronal development, survival and death, in the brain following thoracic contusive SCI in a mouse model. Methods : Eight-week-old female imprinting control region mice (n=60; 30-35 g) were used in this study. We analyzed the expression levels of regulators such as brain-derived neurotrophic factor (BDNF), glial cell line-derived neurotrophic factor (GDNF), nerve growth factor (NGF) and histone deacetylase (HDAC) 1 in the brain following thoracic contusive SCI. Results : The expression of BDNF levels were elevated significantly compared with control group at 2 weeks after injury (p<0.05). The expression of NGF levels were elevated at 2, 4 weeks compared with control group, but these difference were not significant (p>0.05). The GDNF levels were elevated at 2 week compared with control group, but these differences were not significant (p>0.05). The difference of HDAC1 levels were not significant at 2, 4 and 8 weeks compared with control group (p>0.05). Conclusion : These results demonstrate that the upregulation of BDNF may play on important role in brain reorganization after SCI.

YY1 and CP2c in Unidirectional Spermatogenesis and Stemness

  • Cheon, Yong-Pil;Choi, Donchan;Lee, Sung-Ho;Kim, Chul Geun
    • 한국발생생물학회지:발생과생식
    • /
    • 제24권4호
    • /
    • pp.249-261
    • /
    • 2020
  • Spermatogonial stem cells (SSCs) have stemness characteristics, including germ cell-specific imprints that allow them to form gametes. Spermatogenesis involves changes in gene expression such as a transition from expression of somatic to germ cell-specific genes, global repression of gene expression, meiotic sex chromosome inactivation, highly condensed packing of the nucleus with protamines, and morphogenesis. These step-by-step processes finally generate spermatozoa that are fertilization competent. Dynamic epigenetic modifications also confer totipotency to germ cells after fertilization. Primordial germ cells (PGCs) in embryos do not enter meiosis, remain in the proliferative stage, and are referred to as gonocytes, before entering quiescence. Gonocytes develop into SSCs at about 6 days after birth in rodents. Although chromatin structural modification by Polycomb is essential for gene silencing in mammals, and epigenetic changes are critical in spermatogenesis, a comprehensive understanding of transcriptional regulation is lacking. Recently, we evaluated the expression profiles of Yin Yang 1 (YY1) and CP2c in the gonads of E14.5 and 12-week-old mice. YY1 localizes at the nucleus and/or cytoplasm at specific stages of spermatogenesis, possibly by interaction with CP2c and YY1-interacting transcription factor. In the present article, we discuss the possible roles of YY1 and CP2c in spermatogenesis and stemness based on our results and a review of the relevant literature.

M6A reader hnRNPA2/B1 is essential for porcine embryo development via gene expression regulation

  • Kwon, Jeongwoo;Jo, Yu-Jin;Yoon, Seung-Bin;You, Hyeong-ju;Youn, Changsic;Kim, Yejin;Lee, Jiin;Kim, Nam-Hyung;Kim, Ji-Su
    • 한국동물생명공학회지
    • /
    • 제37권2호
    • /
    • pp.121-129
    • /
    • 2022
  • Heterogeneous nuclear ribonucleoprotein A2/B1 (hnRNPA2/B1) is an N6-methyladenosine (m6A) RNA modification regulator and a key determinant of prem-RNA processing, mRNA metabolism and transportation in cells. Currently, m6A reader proteins such as hnRNPA2/B1 and YTHDF2 has functional roles in mice embryo. However, the role of hnRNPA2/B1 in porcine embryogenic development are unclear. Here, we investigated the developmental competence and mRNA expression levels in porcine parthenogenetic embryos after hnRNPA2/B1 knock-down. HhnRNPA2/B1 was localized in the nucleus during subsequent embryonic development since zygote stage. After hnRNPA2/B1 knock-down using double stranded RNA injection, blastocyst formation rate decreased than that in the control group. Moreover, hnRNPA2/B1 knock-down embryos show developmental delay after compaction. In blastocyste stage, total cell number was decreased. Interestingly, gene expression patterns revealed that transcription of Pou5f1, Sox2, TRFP2C, Cdx2 and PARD6B decreased without changing the junction protein, ZO1, OCLN, and CDH1. Thus, hnRNPA2/B1 is necessary for porcine early embryo development by regulating gene expression through epigenetic RNA modification.

Epigenetic regulation of key gene of PCK1 by enhancer and super-enhancer in the pathogenesis of fatty liver hemorrhagic syndrome

  • Yi Wang;Shuwen Chen;Min Xue;Jinhu Ma;Xinrui Yi;Xinyu Li;Xuejin Lu;Meizi Zhu;Jin Peng;Yunshu Tang;Yaling Zhu
    • Animal Bioscience
    • /
    • 제37권8호
    • /
    • pp.1317-1332
    • /
    • 2024
  • Objective: Rare study of the non-coding and regulatory regions of the genome limits our ability to decode the mechanisms of fatty liver hemorrhage syndrome (FLHS) in chickens. Methods: Herein, we constructed the high-fat diet-induced FLHS chicken model to investigate the genome-wide active enhancers and transcriptome by H3K27ac target chromatin immunoprecipitation sequencing (ChIP-seq) and RNA sequencing (RNA-Seq) profiles of normal and FLHS liver tissues. Concurrently, an integrative analysis combining ChIP-seq with RNA-Seq and a comparative analysis with chicken FLHS, rat non-alcoholic fatty liver disease (NAFLD) and human NAFLD at the transcriptome level revealed the enhancer and super enhancer target genes and conservative genes involved in metabolic processes. Results: In total, 56 and 199 peak-genes were identified in upregulated peak-genes positively regulated by H3K27ac (Cor (peak-gene correlation) ≥0.5 and log2(FoldChange) ≥1) (PP) and downregulated peak-genes positively regulated by H3K27ac (Cor (peak-gene correlation) ≥0.5 and log2(FoldChange)≤-1) (PN), respectively; then we screened key regulatory targets mainly distributing in lipid metabolism (PCK1, APOA4, APOA1, INHBE) and apoptosis (KIT, NTRK2) together with MAPK and PPAR signaling pathway in FLHS. Intriguingly, PCK1 was also significantly covered in up-regulated super-enhancers (SEs), which further implied the vital role of PCK1 during the development of FLHS. Conclusion: Together, our studies have identified potential therapeutic biomarkers of PCK1 and elucidated novel insights into the pathogenesis of FLHS, especially for the epigenetic perspective.

Intragenic DNA Methylation Concomitant with Repression of ATP4B and ATP4A Gene Expression in Gastric Cancer is a Potential Serum Biomarker

  • Raja, Uthandaraman Mahalinga;Gopal, Gopisetty;Rajkumar, Thangarajan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권11호
    • /
    • pp.5563-5568
    • /
    • 2012
  • Based on our previous report on gastric cancer which documented ATP4A and ATP4B mRNA down-regulation in gastric tumors relative to normal gastric tissues, we hypothesized that epigenetic mechanisms could be responsible. ATP4A and ATP4B mRNA expression in gastric cancer cell lines AGS, SNU638 and NUGC-3 was examined using reverse transcriptase PCR (RT-PCR). AGS cells were treated with TSA or 5'-AzaDC and methylation specific PCR (MSP) and bisulfite sequencing PCR (BSP) analysis were performed. MSP analysis was on DNA from paraffin embedded tissues sections and plasma. Expression analysis revealed downregulation of ATP4A and ATP4B genes in gastric cancer cell lines relative to normal gastric tissue, while treatment with 5'-AzaDC re-activated expression of both. Search for CpG islands in their putative promoter regions did not indicate CpG islands (CGI) but only further downstream in the bodies of the genes. Methylation specific PCR (MSP) in the exon1 of the ATP4B gene and exon7 in ATP4A indicated methylation in all the gastric cancer cell lines tested. MSP analysis in tumor tissue samples revealed methylation in the majority of tumor samples, 15/19, for ATP4B and 8/8 for ATP4A. There was concordance between ATP4B and ATP4A down-regulation and methylation status in the tumour samples tested. ATP4B methylation was detectable in cell free DNA from gastric cancer patient's plasma samples. Thus ATP4A and ATP4B down-regulation involves DNA methylation and methylated ATP4B DNA in plasma is a potential biomarker for gastric cancer.

A Long Non-Coding RNA snaR Contributes to 5-Fluorouracil Resistance in Human Colon Cancer Cells

  • Lee, Heejin;Kim, Chongtae;Ku, Ja-Lok;Kim, Wook;Kim Yoon, Sungjoo;Kuh, Hyo-Jeong;Lee, Jeong-Hwa;Nam, Suk Woo;Lee, Eun Kyung
    • Molecules and Cells
    • /
    • 제37권7호
    • /
    • pp.540-546
    • /
    • 2014
  • Several types of genetic and epigenetic regulation have been implicated in the development of drug resistance, one significant challenge for cancer therapy. Although changes in the expression of non-coding RNA are also responsible for drug resistance, the specific identities and roles of them remain to be elucidated. Long non-coding RNAs (lncRNAs) are a type of ncRNA (> 200 nt) that influence the regulation of gene expression in various ways. In this study, we aimed to identify differentially expressed lncRNAs in 5-fluorouracil-resistant colon cancer cells. Using two pairs of 5-FU-resistant cells derived from the human colon cancer cell lines SNU-C4 and SNU-C5, we analyzed the expression of 90 lncRNAs by qPCR-based profiling and found that 19 and 23 lncRNAs were differentially expressed in SNU-C4R and SNU-C5R cells, respectively. We confirmed that snaR and BACE1AS were down-regulated in resistant cells. To further investigate the effects of snaR on cell growth, cell viability and cell cycle were analyzed after transfection of siRNAs targeting snaR. Down-regulation of snaR decreased cell death after 5-FU treatment, which indicates that snaR loss decreases in vitro sensitivity to 5-FU. Our results provide an important insight into the involvement of lncRNAs in 5-FU resistance in colon cancer cells.

CTCF Regulates Otic Neurogenesis via Histone Modification in the Neurog1 Locus

  • Shin, Jeong-Oh;Lee, Jong-Joo;Kim, Mikyoung;Chung, Youn Wook;Min, Hyehyun;Kim, Jae-Yoon;Kim, Hyoung-Pyo;Bok, Jinwoong
    • Molecules and Cells
    • /
    • 제41권7호
    • /
    • pp.695-702
    • /
    • 2018
  • The inner ear is a complex sensory organ responsible for hearing and balance. Formation of the inner ear is dependent on tight regulation of spatial and temporal expression of genes that direct a series of developmental processes. Recently, epigenetic regulation has emerged as a crucial regulator of the development of various organs. However, what roles higher-order chromatin organization and its regulator molecules play in inner ear development are unclear. CCCTC-binding factor (CTCF) is a highly conserved 11-zinc finger protein that regulates the three-dimensional architecture of chromatin, and is involved in various gene regulation processes. To delineate the role of CTCF in inner ear development, the present study investigated inner ear-specific Ctcf knockout mouse embryos (Pax2-Cre; $Ctcf^{fl/fl}$). The loss of Ctcf resulted in multiple defects of inner ear development and severely compromised otic neurogenesis, which was partly due to a loss of Neurog1 expression. Furthermore, reduced Neurog1 gene expression by CTCF knockdown was found to be associated with changes in histone modification at the gene's promoter, as well as its upstream enhancer. The results of the present study demonstrate that CTCF plays an essential role in otic neurogenesis by modulating histone modification in the Neurog1 locus.

Evaluation of MiR-34 Family and DNA Methyltransferases 1, 3A, 3B Gene Expression Levels in Hepatocellular Carcinoma Following Treatment with Dendrosomal Nanocurcumin

  • Chamani, Fatemeh;Sadeghizadeh, Majid;Masoumi, Mahbobeh;Babashah, Sadegh
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제17권sup3호
    • /
    • pp.219-224
    • /
    • 2016
  • Hepatocellular carcinoma (HCC) is the most common primary malignancy of the liver making up more than 80 percent of cases. It is known to be the sixth most prevalent cancer and the third most frequent cause of cancer related death worldwide. Epigenetic regulation constitutes an important mechanism by which dietary components can selectively activate or inactivate target gene expression. The miR-34 family members including mir-34a, mir-34b and mir-34c are tumor suppressor micro RNAs, which are expressed in the majority of normal tissues. Several studies have indicated silencing of miR-34 expression via DNA methylation in multiple types of cancers. Bioactive nutrients like curcumin (Cur) have excellent anticarcinogenic activity and minimal toxic manifestations in biological systems. This compound has recently been determined to induce epigenetic changes. However, Cur is lipophilic and has a poor systemic bioavailability and poor absorption. Its bioavailability is increased through employing dendrosome nanoparticles. The aim of the current study was to investigate the effect of dendrosomal nanocurcumin (DNC) on expression of mir-34 family members in two HCC cell lines, HepG2 and Huh7. We performed the MTT assay to evaluate DNC and dendrosome effects on cell viability. The ability of DNC to alter expression of the mir-34 family and DNA methyltransferases (DNMT1, DNMT3A and 3B) was evaluated using semi-quantitative and quantitative PCR. We observed the entrance of DNC into HepG2 and Huh7 cells. Gene expression assays indicated that DNC treatment upregulated mir34a, mir34b and mir34c expression (P<0.05) as well as downregulated DNMT1, DNMT3A and DNMT3B expression (P<0.05) in both HepG2 and Huh7 cell lines. DNC also reduced viability of Huh7 and HepG2 cells through restoration of miR-34s expression. We showed that DNC could awaken the epigenetically silenced miR-34 family by downregulation of DNMTs. Our findings suggest that DNC has potential in epigenetic therapy of HCC.

The role of RNA epigenetic modification-related genes in the immune response of cattle to mastitis induced by Staphylococcus aureus

  • Yue Xing;Yongjie Tang;Quanzhen Chen;Siqian Chen;Wenlong Li;Siyuan Mi;Ying Yu
    • Animal Bioscience
    • /
    • 제37권7호
    • /
    • pp.1141-1155
    • /
    • 2024
  • Objective: RNA epigenetic modifications play an important role in regulating immune response of mammals. Bovine mastitis induced by Staphylococcus aureus (S. aureus) is a threat to the health of dairy cattle. There are numerous RNA modifications, and how these modification-associated enzymes systematically coordinate their immunomodulatory effects during bovine mastitis is not well reported. Therefore, the role of common RNA modification-related genes (RMRGs) in bovine S. aureus mastitis was investigated in this study. Methods: In total, 80 RMRGs were selected for this study. Four public RNA-seq data sets about bovine S. aureus mastitis were collected and one additional RNA-seq data set was generated by this study. Firstly, quantitative trait locus (QTL) database, transcriptome-wide association studies (TWAS) database and differential expression analyses were employed to characterize the potential functions of selected enzyme genes in bovine S. aureus mastitis. Correlation analysis and weighted gene co-expression network analysis (WGCNA) were used to further investigate the relationships of RMRGs from different types at the mRNA expression level. Interference experiments targeting the m6 A demethylase FTO and utilizing public MeRIP-seq dataset from bovine Mac-T cells were used to investigate the potential interaction mechanisms among various RNA modifications. Results: Bovine QTL and TWAS database in cattle revealed associations between RMRGs and immune-related complex traits. S. aureus challenged and control groups were effectively distinguished by principal component analysis based on the expression of selected RMRGs. WGCNA and correlation analysis identified modules grouping different RMRGs, with highly correlated mRNA expression. The m6 A modification gene FTO showed significant effects on the expression of m6 A and other RMRGs (such as NSUN2, CPSF2, and METTLE), indicating complex co-expression relationships among different RNA modifications in the regulation of bovine S. aureus mastitis. Conclusion: RNA epigenetic modification genes play important immunoregulatory roles in bovine S. aureus mastitis, and there are extensive interactions of mRNA expression among different RMRGs. It is necessary to investigate the interactions between RNA modification genes regulating complex traits in the future.

식물의 물부족 스트레스 신호 전달 네트워크에 대한 이해 (Understanding of Drought Stress Signaling Network in Plants)

  • 이재훈
    • 생명과학회지
    • /
    • 제28권3호
    • /
    • pp.376-387
    • /
    • 2018
  • 식물이 접하는 다양한 환경 스트레스(고온, 저온, 냉해, 고염, 가뭄 등) 중에서 물부족(가뭄) 스트레스는 식물의 생장 및 생산성을 저해하는 가장 주요한 요인으로 보고되어 왔다. 그러므로, 물부족 스트레스에 대한 식물의 반응 기작을 명확히 이해하는 것은 물부족 스트레스 저항성이 증가된 유용 작물 개발에 적용될 수 있을 것으로 기대되며, 그 결과 작물 재배 가능 지역의 확대에 기여할 수 있을 것으로 생각된다. 식물의 물부족 스트레스 신호 과정은 크게 식물 호르몬인 앱시스산 의존적인 과정과 비의존적인 과정으로 분류되며, 각각 AREB/ABF, DREB2 전사 조절 인자가 주요한 전사 조절 인자로 참여하여 하위 단계 반응 유전자의 발현 조절에 참여한다. 이러한 AREB/ABF, DREB2 의존적인 regulon에 대한 연구를 통해 물부족 스트레스 신호 과정 중 전사 수준의 조절에 대한 규명이 활발히 이루어지고 있다. 해당 신호 과정에는 전사 수준의 조절뿐만 아니라 인산화, 유비퀴틴화와 같은 번역 후 변형 과정 및 염색질 변형에 의해 매개되는 후성유전학적 조절도 연관되어 있다. 본 총설에서는 현재까지 보고된 물부족 스트레스 신호 전달 과정을, 이와 관련되어 보고된 다양한 신호 전달 단백질들의 기능과 연계시켜 알아보고자 한다. 이러한 물부족 스트레스 신호 전달 과정에 대한 명확한 이해는 향후 유용 내건성 작물 개발을 위한 이론적 기반 구축에 도움이 될 수 있을 것이라 생각된다.