• Title/Summary/Keyword: Epigenetic factors

Search Result 102, Processing Time 0.026 seconds

Genetic factors in precocious puberty

  • Shim, Young Suk;Lee, Hae Sang;Hwang, Jin Soon
    • Clinical and Experimental Pediatrics
    • /
    • v.65 no.4
    • /
    • pp.172-181
    • /
    • 2022
  • Pubertal onset is known to result from reactivation of the hypothalamic-pituitary-gonadal (HPG) axis, which is controlled by complex interactions of genetic and nongenetic factors. Most cases of precocious puberty (PP) are diagnosed as central PP (CPP), defined as premature activation of the HPG axis. The cause of CPP in most girls is not identifiable and, thus, referred to as idiopathic CPP (ICPP), whereas boys are more likely to have an organic lesion in the brain. ICPP has a genetic background, as supported by studies showing that maternal age at menarche is associated with pubertal timing in their offspring. A gain of expression in the kisspeptin gene (KISS1), gain-of-function mutation in the kisspeptin receptor gene (KISS1R), loss-of-function mutation in makorin ring finger protein 3 (MKRN3), and loss-of-function mutations in the delta-like homolog 1 gene (DLK1) have been associated with ICPP. Other genes, such as gamma-aminobutyric acid receptor subunit alpha-1 (GABRA1), lin-28 homolog B (LIN28B), neuropeptide Y (NPYR), tachykinin 3 (TAC3), and tachykinin receptor 3 (TACR3), have been implicated in the progression of ICPP, although their relationships require elucidation. Environmental and socioeconomic factors may also be correlated with ICPP. In the progression of CPP, epigenetic factors such as DNA methylation, histone posttranslational modifications, and non-coding ribonucleic acids may mediate the relationship between genetic and environmental factors. CPP is correlated with short- and long-term adverse health outcomes, which forms the rationale for research focusing on understanding its genetic and nongenetic factors.

Turning Hepatic Cancer Stem Cells Inside Out - A Deeper Understanding through Multiple Perspectives

  • Chan, Lok-Hei;Luk, Steve T.;Ma, Stephanie
    • Molecules and Cells
    • /
    • v.38 no.3
    • /
    • pp.202-209
    • /
    • 2015
  • Hepatocellular carcinoma (HCC), a highly malignant disease and the third leading cause of all cancer mortalities worldwide, often responses poorly to current treatments and results in dismal outcomes due to frequent chemoresistance and tumor relapse. The heterogeneity of HCC is an important attribute of the disease. It is the outcome of many factors, including the cross-talk between tumor cells within the tumor microenvironment and the acquisition and accumulation of genetic and epigenetic alterations in tumor cells. In addition, there is accumulating evidence in recent years to show that the malignancy of HCC can be attributed partly to the presence of cancer stem cell (CSC). CSCs are capable to self-renew, differentiate and initiate tumor formation. The regulation of the stem cell-like properties by several important signaling pathways have been found to endow the tumor cells with an increased level of tumorigenicity, chemoresistance, and metastatic ability. In this review, we will discuss the recent findings on hepatic CSCs, with special emphasis on their putative origins, relationship with hepatitis viruses, regulatory signaling networks, tumor microenvironment, and how these factors control the stemness of hepatic CSCs. We will also discuss some novel therapeutic strategies targeted at hepatic CSCs for combating HCC and perspectives of future investigation.

Human Endogenous Retroviruses as Gene Expression Regulators: Insights from Animal Models into Human Diseases

  • Durnaoglu, Serpen;Lee, Sun-Kyung;Ahnn, Joohong
    • Molecules and Cells
    • /
    • v.44 no.12
    • /
    • pp.861-878
    • /
    • 2021
  • The human genome contains many retroviral elements called human endogenous retroviruses (HERVs), resulting from the integration of retroviruses throughout evolution. HERVs once were considered inactive junk because they are not replication-competent, primarily localized in the heterochromatin, and silenced by methylation. But HERVs are now clearly shown to actively regulate gene expression in various physiological and pathological conditions such as developmental processes, immune regulation, cancers, autoimmune diseases, and neurological disorders. Recent studies report that HERVs are activated in patients suffering from coronavirus disease 2019 (COVID-19), the current pandemic caused by SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) infection. In this review, we describe internal and external factors that influence HERV activities. We also present evidence showing the gene regulatory activity of HERV LTRs (long terminal repeats) in model organisms such as mice, rats, zebrafish, and invertebrate models of worms and flies. Finally, we discuss several molecular and cellular pathways involving various transcription factors and receptors, through which HERVs affect downstream cellular and physiological events such as epigenetic modifications, calcium influx, protein phosphorylation, and cytokine release. Understanding how HERVs participate in various physiological and pathological processes will help develop a strategy to generate effective therapeutic approaches targeting HERVs.

Understanding of Drought Stress Signaling Network in Plants (식물의 물부족 스트레스 신호 전달 네트워크에 대한 이해)

  • Lee, Jae-Hoon
    • Journal of Life Science
    • /
    • v.28 no.3
    • /
    • pp.376-387
    • /
    • 2018
  • Among a variety of environmental stresses heat, cold, chilling, high salt, drought, and so on exposed to plants, drought stress has been reported as a crucial factor to adversely affect the growth and productivity of plants. Therefore, to understand the mechanism for the drought stress signal transduction pathway in plants is more helpful to develop useful crops that display the enhanced tolerance against drought stress, and to expand crop growing areas. The signal transduction pathway for the drought stress in plants is largely categorized into two types; ABA-dependent pathway and ABA-independent pathway. It has been reported that two transcription factors, AREB/ABF and DREB2, play predominant roles in ABA-dependent and ABA-independent pathways, respectively. In addition to transcriptional regulation mediated by AREB/ABF and DREB2 transcription factors, post-translational modification (such as phosphorylation and ubiquitination) and epigenetic control are importantly involved in the signal transduction for drought stress. In this paper, we review current understanding of signal transduction pathway on drought stress in plants, especially focusing on the biological roles of a variety of signaling components related to drought stress response. Further understanding the mechanism of drought resistance in plants through this review will be useful to establish theoretical basis for developing drought tolerant crops in the future.

Clinical and Neurobiological Relevance of Current Animal Models of Autism Spectrum Disorders

  • Kim, Ki Chan;Gonzales, Edson Luck;Lazaro, Maria T.;Choi, Chang Soon;Bahn, Geon Ho;Yoo, Hee Jeong;Shin, Chan Young
    • Biomolecules & Therapeutics
    • /
    • v.24 no.3
    • /
    • pp.207-243
    • /
    • 2016
  • Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by social and communication impairments, as well as repetitive and restrictive behaviors. The phenotypic heterogeneity of ASD has made it overwhelmingly difficult to determine the exact etiology and pathophysiology underlying the core symptoms, which are often accompanied by comorbidities such as hyperactivity, seizures, and sensorimotor abnormalities. To our benefit, the advent of animal models has allowed us to assess and test diverse risk factors of ASD, both genetic and environmental, and measure their contribution to the manifestation of autistic symptoms. At a broader scale, rodent models have helped consolidate molecular pathways and unify the neurophysiological mechanisms underlying each one of the various etiologies. This approach will potentially enable the stratification of ASD into clinical, molecular, and neurophenotypic subgroups, further proving their translational utility. It is henceforth paramount to establish a common ground of mechanistic theories from complementing results in preclinical research. In this review, we cluster the ASD animal models into lesion and genetic models and further classify them based on the corresponding environmental, epigenetic and genetic factors. Finally, we summarize the symptoms and neuropathological highlights for each model and make critical comparisons that elucidate their clinical and neurobiological relevance.

Ambient air pollution and allergic diseases in children

  • Kim, Byoung-Ju;Hong, Soo-Jong
    • Clinical and Experimental Pediatrics
    • /
    • v.55 no.6
    • /
    • pp.185-192
    • /
    • 2012
  • The prevalence of allergic diseases has increased worldwide, a phenomenon that can be largely attributed to environmental effects. Among environmental factors, air pollution due to traffic is thought to be a major threat to childhood health. Residing near busy roadways is associated with increased asthma hospitalization, decreased lung function, and increased prevalence and severity of wheezing and allergic rhinitis. Recently, prospective cohort studies using more accurate measurements of individual exposure to air pollution have been conducted and have provided definitive evidence of the impact of air pollution on allergic diseases. Particulate matter and ground-level ozone are the most frequent air pollutants that cause harmful effects, and the mechanisms underlying these effects may be related to oxidative stress. The reactive oxidative species produced in response to air pollutants can overwhelm the redox system and damage the cell wall, lipids, proteins, and DNA, leading to airway inflammation and hyper-reactivity. Pollutants may also cause harmful effects via epigenetic mechanisms, which control the expression of genes without changing the DNA sequence itself. These mechanisms are likely to be a target for the prevention of allergies. Further studies are necessary to identify children at risk and understand how these mechanisms regulate gene-environment interactions. This review provides an update of the current understanding on the impact of air pollution on allergic diseases in children and facilitates the integration of issues regarding air pollution and allergies into pediatric practices, with the goal of improving pediatric health.

Long Non-coding RNAs and Drug Resistance

  • Pan, Jing-Jing;Xie, Xiao-Juan;Li, Xu;Chen, Wei
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.18
    • /
    • pp.8067-8073
    • /
    • 2016
  • Background: Long non-coding RNAs (lncRNAs) are emerging as key players in gene expression that govern cell developmental processes, and thus contributing to diseases, especially cancers. Many studies have suggested that aberrant expression of lncRNAs is responsible for drug resistance, a substantial obstacle for cancer therapy. Drug resistance not only results from individual variations in patients, but also from genetic and epigenetic differences in tumors. It is reported that drug resistance is tightly modulated by lncRNAs which change the stability and translation of mRNAs encoding factors involved in cell survival, proliferation, and drug metabolism. In this review, we summarize recent advances in research on lncRNAs associated with drug resistance and underlying molecular or cellular mechanisms, which may contribute helpful approaches for the development of new therapeutic strategies to overcome treatment failure.

Diet Folate, DNA Methylation and Polymorphisms in Methylenetetrahydrofolate Reductase in Association with the Susceptibility to Gastric Cancer

  • Gao, Shang;Ding, Li-Hong;Wang, Jian-Wei;Li, Cun-Bao;Wang, Zhao-Yang
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.1
    • /
    • pp.299-302
    • /
    • 2013
  • Methylenetetrahydrofolate reductase (MTHFR) has been reported to be associated with DNA methylation, an epigenetic feature frequently found in gastric cancer. We conducted a case-control study to explore the association of MTHFR C677T polymorphisms with gastric cancer risk and its relation with the DNA methylation of COX-2, MGMT, and hMLH1 genes. Genotyping of P16, MGMT and HMLH1 was determined by methylation-specific PCR after sodium bisulfate modification of DNA, and genotyping of MTHFR C677T was conducted by TaqMan assays using the ABI Prism 7911HT Sequence Detection System. Folate intake was calculated with the aid of a questionnaire. Compared with the MTHFR 677CC genotype, the TT genotype was significantly associated with 2.08 fold risk of gastric cancer when adjusting for potential risk factors. Individuals who had an intake of folate above $310{\mu}g$/day showed protective effects against gastric cancer risk. The effect of MTHFR C677T polymorphisms on the risk of gastric cancer was modified by folate intake and methylation status of MGMT (P for interaction <0.05).

Imprinted gene Zinc finger protein 127 is a novel regulator of master pluripotency transcription factor, Oct4

  • Kwon, Yoo-Wook;Ahn, Hyo-Suk;Park, Joo-Young;Yang, Han-Mo;Cho, Hyun-Jai;Kim, Hyo-Soo
    • BMB Reports
    • /
    • v.51 no.5
    • /
    • pp.242-248
    • /
    • 2018
  • Induced pluripotent stem cells (iPSCs) show great promise for replacing current stem cell therapies in the field of regenerative medicine. However, the original method for cellular reprogramming, involving four exogenous transcription factors, is characterized by low efficiency. Here, we focused on using epigenetic modifications to enhance the reprogramming efficiency. We hypothesized that there would be a new reprogramming factor involved in DNA demethylation, acting on the promoters of pluripotency-related genes. We screened proteins that bind to the methylated promoter of Oct4 and identified Zinc finger protein 127 (Zfp127), the functions of which have not yet been identified. We found that Zfp127 binds to the Oct4 promoter. Overexpression of Zfp127 in fibroblasts induced demethylation of the Oct4 promoter, thus enhancing Oct4 promoter activity and gene expression. These results demonstrate that Zfp127 is a novel regulator of Oct4, and may become a potent target to improve cellular reprogramming.

Tyrosine Kinase Inhibitors in Ph+ Chronic Myeloid Leukemia Therapy: a Review

  • Shah, Krupa;Parikh, Sonia;Rawal, Rakesh
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.7
    • /
    • pp.3025-3033
    • /
    • 2016
  • Chronic myeloid leukaemia (CML) is a clonal myeloproliferative hematopoietic stem cell disorder. Deregulated BCR-ABL fusion tyrosine kinase activity is the main cause of CML disease pathogenesis, making BCR-ABL an ideal target for inhibition. Current tyrosine kinase inhibitors (TKIs) designed to inhibit BCR-ABL oncoprotein activity, have completely transformed the prognosis of CML. Interruption of TKI treatment leads to minimal residual disease reside (MRD), thought to reside in TKI-insensitive leukaemia stem cells which remain a potential reservoir for disease relapse. This highlights the need to develop new therapeutic strategies for CML either as small molecule master TKIs or phytopharmaceuticals derived from nature to achieve chronic molecular remission. This review outlines the past, present and future therapeutic approaches for CML including coverage of relevant mechanisms, whether ABL dependent or independent, and epigenetic factors responsible for developing resistance against TKIs. Appearance of mutant clones along the course of therapy either pre-existing or induced due to therapy is still a challenge for the clinician. A proposed in-vitro model of generating colony forming units from CML stem cells derived from diagnostic samples seems to be achievable in the era of high throughput technology which can take care of single cell genomic profiling.