• 제목/요약/키워드: Epigenetic

검색결과 439건 처리시간 0.027초

Epigenetic Changes in Asthma: Role of DNA CpG Methylation

  • Bae, Da-Jeong;Jun, Ji Ae;Chang, Hun Soo;Park, Jong Sook;Park, Choon-Sik
    • Tuberculosis and Respiratory Diseases
    • /
    • 제83권1호
    • /
    • pp.1-13
    • /
    • 2020
  • For the past three decades, more than a thousand of genetic studies have been performed to find out the genetic variants responsible for the risk of asthma. Until now, all of the discovered single nucleotide polymorphisms have explained genetic effects less than initially expected. Thus, clarification of environmental factors has been brought up to overcome the 'missing' heritability. The most exciting solution is epigenesis because it intervenes at the junction between the genome and the environment. Epigenesis is an alteration of genetic expression without changes of DNA sequence caused by environmental factors such as nutrients, allergens, cigarette smoke, air pollutants, use of drugs and infectious agents during pre- and post-natal periods and even in adulthood. Three major forms of epigenesis are composed of DNA methylation, histone modifications, and specific microRNA. Recently, several studies have been published on epigenesis in asthma and allergy as a powerful tool for research of genetic heritability in asthma albeit epigenetic changes are at the starting point to obtain the data on specific phenotypes of asthma. In this presentation, we mainly review the potential role of DNA CpG methylation in the risk of asthma and its sub-phenotypes including nonsteroidal anti-inflammatory exacerbated respiratory diseases.

H19 Gene Is Epigenetically Stable in Mouse Multipotent Germline Stem Cells

  • Oh, Shin Hye;Jung, Yoon Hee;Gupta, Mukesh Kumar;Uhm, Sang Jun;Lee, Hoon Taek
    • Molecules and Cells
    • /
    • 제27권6호
    • /
    • pp.635-640
    • /
    • 2009
  • Testis-derived germline stem (GS) cells can undergo reprogramming to acquire multipotency when cultured under appropriate culture conditions. These multipotent GS (mGS) cells have been known to differ from GS cells in their DNA methylation pattern. In this study, we examined the DNA methylation status of the H19 imprinting control region (ICR) in multipotent adult germline stem (maGS) cells to elucidate how epigenetic imprints are altered by culture conditions. DNA methylation was analyzed by bisulfite sequencing PCR of established maGS cells cultured in the presence of glial cell line-derived neurotrophic factor (GDNF) alone or both GDNF and leukemia inhibitory factor (LIF). The results showed that the H19 ICR in maGS cells of both groups was hypermethylated and had an androgenetic pattern similar to that of GS cells. In line with these data, the relative abundance of the Igf2 mRNA transcript was two-fold higher and that of H19 was three fold lower than in control embryonic stem cells. The androgenetic DNA methylation pattern of the H19 ICR was maintained even after 54 passages. Furthermore, differentiating maGS cells from retinoic acid-treated embryoid bodies maintained the androgenetic imprinting pattern of the H19 ICR. Taken together these data suggest that our maGS cells are epigenetically stable for the H19 gene during in vitro modifications. Further studies on the epigenetic regulation and chromatin structure of maGS cells are therefore necessary before their full potential can be utilized in regenerative medicine.

Post-transcriptional Regulation of Gcn5, a Putative Regulator of Hox in Mouse Embryonic Fibroblast Cells

  • Lee, You-Ra;Oh, Ji-Hoon;Kong, Kyoung-Ah;Kim, Myoung-Hee
    • 대한의생명과학회지
    • /
    • 제18권2호
    • /
    • pp.165-168
    • /
    • 2012
  • Hox proteins containing DNA-binding homedomain act as transcription factors important for anteroposterior body patterning during vertebrate embryogenesis. However, the precise mechanisms by which signal pathways are transduced to regulate the Hox gene expression are not clear. In the course of an attempt to isolate an upstream regulatory factor(s) controlling Hox genes, protein kinase B alpha (Akt1) has been identified as a putative regulator of Hox genes through in silico analysis (GEO profile). In the Gene Expression Omnibus (GEO) dataset GDS1784 at the NCBI (National Center for Biotechnology Information) site, Hox genes were differentially expressed depending on the presence or absence of Akt1. Since it was not well known how Akt1 regulates the specific Hox genes, whose transcription was reported to be regulated by epigenetic modifications such as histone acetylation, methylation etc., the expression of Gcn5, a histone acetyltransferase (HAT), was analyzed in wild type (WT) as well as in $Akt1^{-/-}$ mouse embryonic fibroblast (MEF) cells. RT-PCR analysis revealed that the amount of Gcn5 mRNA was similar in both WT and $Akt1^{-/-}$ MEFs. However, the protein level of Gcn5 was significantly increased in $Akt1^{-/-}$ MEF cells. The half life of Gcn5 was 1 hour in wild type whereas 8 hours in $Akt1^{-/-}$ MEF. These data all together, indicate that Gcn5 is post-transcriptionally down-regulated and the protein stability is negatively regulated by Akt1 in MEF cells.

The Role of Stem Cells and Gap Junctional Intercellular Communication in Carcinogenesis

  • Trosko, James E.
    • BMB Reports
    • /
    • 제36권1호
    • /
    • pp.43-48
    • /
    • 2003
  • Understanding the process of carcinogenesis will involve both the accumulation of many scientific facts derived from molecular, biochemical, cellular, physiological, whole animal experiments and epidemiological studies, as well as from conceptual understanding as to how to order and integrate those facts. From decades of cancer research, a number of the "hallmarks of cancer" have been identified, as well as their attendant concepts, including oncogenes, tumor suppressor genes, cell cycle biochemistry, hypotheses of metastasis, angiogenesis, etc. While all these "hallmarks" are well known, two important concepts, with their associated scientific observations, have been generally ignored by many in the cancer research field. The objective of the short review is to highlight the concept of the role of human adult pluri-potent stem cells as "target cells" for the carcinogenic process and the concept of the role of gap junctional intercellular communication in the multi-stage, multi-mechanism process of carcinogenesis. With these two concepts, an attempt has been made to integrate the other well-known concepts, such as the multi-stage, multi-mechanisn or the "initiation/promotion/progression" hypothesis; the stem cell theory of carcinogenesis; the oncogene/tumor suppression theory and the mutation/epigenetic theories of carcinogenesis. This new "integrative" theory tries to explain the well-known "hallmarks" of cancers, including the observation that cancer cells lack either heterologous or homologous gap junctional intercellular communication whereas normal human adult stem cells do not have expressed or functional gap junctional intercellular communication. On the other hand, their normal differentiated, non-stem cell derivatives do express connexins and express gap junctional intercellular communication during their differentiation. Examination of the roles of chemical tumor promoters, oncogenes, connexin knock-out mice and roles of genetically-engineered tumor and normal cells with connexin and anti-sense connexin genes, respectively, seems to provide evidence which is consistent with the roles of both stem cells and gap junctional communication playing a major role in carcinogenesis. The integrative hypothesis provides new strategies for chemoprevention and chemotherapy which focuses on modulating connexin gene expression or gap junctional intercellular communication in the premalignant and malignant cells, respectively.

DNA Methylation of Gene Expression in Acanthamoeba castellanii Encystation

  • Moon, Eun-Kyung;Hong, Yeonchul;Lee, Hae-Ahm;Quan, Fu-Shi;Kong, Hyun-Hee
    • Parasites, Hosts and Diseases
    • /
    • 제55권2호
    • /
    • pp.115-120
    • /
    • 2017
  • Encystation mediating cyst specific cysteine proteinase (CSCP) of Acanthamoeba castellanii is expressed remarkably during encystation. However, the molecular mechanism involved in the regulation of CSCP gene expression remains unclear. In this study, we focused on epigenetic regulation of gene expression during encystation of Acanthamoeba. To evaluate methylation as a potential mechanism involved in the regulation of CSCP expression, we first investigated the correlation between promoter methylation status of CSCP gene and its expression. A 2,878 bp of promoter sequence of CSCP gene was amplified by PCR. Three CpG islands (island 1-3) were detected in this sequence using bioinformatics tools. Methylation of CpG island in trophozoites and cysts was measured by bisulfite sequence PCR. CSCP promoter methylation of CpG island 1 (1,633 bp) was found in 8.2% of trophozoites and 7.3% of cysts. Methylation of CpG island 2 (625 bp) was observed in 4.2% of trophozoites and 5.8% of cysts. Methylation of CpG island 3 (367 bp) in trophozoites and cysts was both 3.6%. These results suggest that DNA methylation system is present in CSCP gene expression of Acanthamoeba. In addition, the expression of encystation mediating CSCP is correlated with promoter CpG island 1 hypomethylation.

생쥐의 수정란 배아줄기세포와 체세포핵이식 배아줄기세포에서 각인유전자, H19, Igf2r, Snrpn의 메틸화 경향 (Methylation Patterns of Imprinting Genes, H19, Igf2r, and Snrpn, in Mouse Embryonic Stem Cells and Nuclear Transferred Embryonic Stem Cells)

  • 이민호;주진영;조율희;심성한
    • 한국발생생물학회지:발생과생식
    • /
    • 제14권4호
    • /
    • pp.253-259
    • /
    • 2010
  • DNA 메틸화 (DNA methylation)는 유전자의 발현을 조절하는 대표적인 후생학적 조절기작 (epigenetic regulation) 중에 하나이다. DNA 메틸화 양상은 생식세포 형성과정 및 배 발생단계에서 탈메틸화 (demethylation)와 de novo 메틸화의 드라마틱한 변화가 일어난다. 또한 이러한 DNA 메틸화는 배아줄기세포 (embryonic stem cells, ESCs)에서 특징적인 양상을 보이는 것으로 알려져 있다. 본 연구에서는 생쥐 수정란 유래 배아줄기세포와 체세포핵이식 배아줄기세포 (nuclear transplanted ESCs)를 이용해서 대표적 각인유전자 (imprinting genes)로 알려진 Snrpn, Igf2r, H19 유전자들에 대한 메틸화 양상을 알아보고자 하였다. 연구 결과 H19 유전자에 대해서는 DNA 메틸화 양상은 수정란 유래 배아줄기세포와 체세포핵이식 배아줄기세포에서 비슷한 경향을 보였으나, Snrpn과 Igf2r의 경우에는 체세포핵이식 배아줄기세포에서 과메틸화 (hypermethylation) 경향을 보였다.

Global DNA Methylation of Porcine Embryos during Preimplantation Development

  • Yeo, S.E.;Kang, Y.K.;Koo, D.B.;Han, J.S.;Yu, K.;Kim, C.H.;Park, H.;Chang, W.K.;Lee, K.K.;Han, Y.M.
    • 한국가축번식학회지
    • /
    • 제27권4호
    • /
    • pp.309-315
    • /
    • 2003
  • DNA methylation at CpG sites, which is a epigenetic modification, is associated with gene expression without change of DNA sequences. During early mouse embryogenesis, dynamic changes of DNA methylation occur. In this study, DNA methylation patterns of porcine embryos produced in vivo and in vitro were examined at various developmental stages by the immunocytochemical staining method. Interestingly, active demethylation was not observed on the paternal pronucleus of porcine zygotes. However, differences were detected in the passive demethylation process between in vivo and in vitro embryos. There was no change in the DNA methylation state until the blastocyst stage of in vivo embryos, whereas partial demethylation was observed in several blastomeres from a 4 cell stage to a morula stage of in vitro embryos. The whole genome of inner cell mass (ICM) and trophectoderm (TE) cells in porcine blastocysts were evenly methylated without de novo methylation. Our findings demonstrate that genome-wide demethylation does not occur in pig embryos during preimplantation development unlike murine and bovine embryos. It indicates that the machinery regulating epigenetic reprogramming may be different between species.

Enhanced Green Fluorescent Protein Gene under the Regulation of Human Oct4 Promoter as a Marker to Identify Reprogramming of Human Fibroblasts

  • Heo, Soon-Young;Ahn, Kwang-Sung;Kang, Jee-Hyun;Shim, Ho-Sup
    • Reproductive and Developmental Biology
    • /
    • 제32권2호
    • /
    • pp.135-140
    • /
    • 2008
  • Recent studies on nuclear transfer and induced pluripotent stem cells have demonstrated that differentiated somatic cells can be returned to the undifferentiated state by reversing their developmental process. These epigenetically reprogrammed somatic cells may again be differentiated into various cell types, and used for cell replacement therapies through autologous transplantation to treat many degenerative diseases. To date, however, reprogramming of somatic cells into undifferentiated cells has been extremely inefficient. Hence, reliable markers to identify the event of reprogramming would assist effective selection of reprogrammed cells. In this study, a transgene construct encoding enhanced green fluorescent protein (EGFP) under the regulation of human Oct4 promoter was developed as a reporter for the reprogramming of somatic cells. Microinjection of the transgene construct into pronuclei of fertilized mouse eggs resulted in the emission of green fluorescence, suggesting that the undifferentiated cytoplasmic environment provided by fertilized eggs induces the expression of EGFP. Next, the transgene construct was introduced into human embryonic fibroblasts, and the nuclei from these cells were transferred into enucleated porcine oocytes. Along with their in vitro development, nuclear transfer embryos emitted green fluorescence, suggesting the reprogramming of donor nuclei in nuclear transfer embryos. The results of the present study demonstrate that expression of the transgene under the regulation of human Oct4 promoter coincides with epigenetic reprogramming, and may be used as a convenient marker that non-invasively reflects reprogramming of somatic cells.

Epigenetic Regulation of Human Riboflavin Transporter 2(hRFT2) in Cervical Cancers from Uighur Women

  • Ma, Jun-Qi;Kurban, Shajidai;Zhao, Jun-Da;Li, Qiao-Zhi;Hasimu, Ayshamgul
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권6호
    • /
    • pp.2485-2489
    • /
    • 2014
  • In the present study, we studied the hypermethylation of the human riboflavin transporter 2 (hRFT2) gene and regulation of protein expression in biopsies from resected tissues from Uighur cervical squamous cell carcinoma (CSCC) patients and their neighboring normal tissues. hRFT2 gene promoter region methylation sequences were mapped in cervical cancer cell line SiHa by bisulfite-sequencing PCR and quantitative detection of methylated DNA from 30 pairs of Uighur's CSCCs and adjacent normal tissues by MassARRAY (Sequenom, San Diego, CA, USA) and hRFT2 protein expression was analyzed by immunohistochemistry. In SiHa, we identified 2 CG sites methylated from all of 12CpG sites of the hRFT2 gene. Analysis of the data from quantitative analysis of single CpG site methylation by Sequenom MassARRAY platform showed that the methylation level between two CpG sites (CpG 2 and CpG 3) from CpG 1~12 showed significant differences between CSCC and neighboring normal tissues. However, the methylation level of whole target CpG fragments demonstrated no significant variation between CSCC ($0.476{\pm}0.020$) and neighboring normal tissues ($0.401{\pm}0.019$, p>0.05). There was a tendency for translocation the hRFT2 proteins from cytoplasm/membrane to nucleus in CSCC with increase in methylation of CpG 2 and CpG 3 in hRFT2gene promoter regions, which may relate to the genesis of CSCC. Our results suggested that epigenetic modifications are responsible for aberrant expression of the hRFT2 gene, and may help to understand mechanisms of cervical carcinogenesis.

A lifelong exposure to a Western-style diet, but not aging, alters global DNA methylation in mouse colon

  • Choi, Sang-Woon;Tammen, Stephanie A;Liu, Zhenhua;Friso, Simonetta
    • Nutrition Research and Practice
    • /
    • 제9권4호
    • /
    • pp.358-363
    • /
    • 2015
  • BACKGROUND/OBJECTIVES: Previous studies have indicated that when compared to young mice, old mice have lower global DNA methylation and higher p16 promoter methylation in colonic mucosa, which is a common finding in colon cancer. It is also known that a Western-style diet (WSD) high in fat and calories, and low in calcium, vitamin D, fiber, methionine and choline (based on the AIN 76A diet) is tumorigenic in colons of mice. Because DNA methylation is modifiable by diet, we investigate whether a WSD disrupts DNA methylation patterns, creating a tumorigenic environment. SUBJECTVIES/METHODS: We investigated the effects of a WSD and aging on global and p16 promoter DNA methylation in the colon. Two month old male C57BL/6 mice were fed either a WSD or a control diet (AIN76A) for 6, 12 or 17 months. Global DNA methylation, p16 promoter methylation and p16 expression were determined by LC/MS, methyl-specific PCR and real time RT-PCR, respectively. RESULTS: The WSD group demonstrated significantly decreased global DNA methylation compared with the control at 17 months (4.05 vs 4.31%, P = 0.019). While both diets did not change global DNA methylation over time, mice fed the WSD had lower global methylation relative to controls when comparing all animals (4.13 vs 4.30%, P = 0.0005). There was an increase in p16 promoter methylation from 6 to 17 months in both diet groups (P < 0.05) but no differences were observed between diet groups. Expression of p16 increased with age in both control and WSD groups. CONCLUSIONS: In this model a WSD reduces global DNA methylation, whereas aging itself has no affect. Although the epigenetic effect of aging was not strong enough to alter global DNA methylation, changes in promoter-specific methylation and gene expression occurred with aging regardless of diet, demonstrating the complexity of epigenetic patterns.