• Title/Summary/Keyword: Epigallocatechin-gallate (EGCG)

Search Result 190, Processing Time 0.027 seconds

The Protective Effect of Epigallocatechin-3 Gallate on Ischemia/Reperfusion Injury in Isolated Rat Hearts: An ex vivo Approach

  • Piao, Cheng Shi;Kim, Do-Sung;Ha, Ki-Chan;Kim, Hyung-Ryong;Chae, Han-Jung;Chae, Soo-Wan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.15 no.5
    • /
    • pp.259-266
    • /
    • 2011
  • The aim of this study was to evaluate the preventive role of epigallocatechin-3 gallate (EGCG, a derivative of green tea) in ischemia/reperfusion (I/R) injury of isolated rat hearts. It has been suggested that EGCG has beneficial health effects, including prevention of cancer and heart disease, and it is also a potent antioxidant. Rat hearts were subjected to 20 min of normoxia, 20 min of zero-flow ischemia and then 50 min of reperfusion. EGCG was perfused 10 min before ischemia and during the whole reperfusion period. EGCG significantly increased left ventricular developed pressure (LVDP) and increased maximum positive and negative dP/dt (+/-dP/dtmax). EGCG also significantly increased the coronary flow (CF) at baseline before ischemia and at the onset of the reperfusion period. Moreover, EGCG decreased left ventricular end diastolic pressure (LVEDP). This study showed that lipid peroxydation was inhibited and Mn-SOD and catalase expressions were increased in the presence of EGCG. In addition, EGCG increased levels of Bcl-2, Mn-superoxide dismutase (SOD), and catalase expression and decreased levels of Bax and increased the ratio of Bcl-2/Bax in isolated rat hearts. Cleaved caspase-3 was decreased after EGCG treatment. EGCG markedly decreased the infarct size while attenuating the increase in lactate dehydrogenase (LDH) levels in the effluent. In summary, we suggest that EGCG has a protective effect on I/R-associated hemodynamic alteration and injury by acting as an antioxidant and anti-apoptotic agent in one.

Comparison of Green Tea Extract and Epigallocatechin Gallate on Secretion of Catecholamines from the Rabbit Adrenal Medulla

  • Lim Dong-Yoon
    • Archives of Pharmacal Research
    • /
    • v.28 no.8
    • /
    • pp.914-922
    • /
    • 2005
  • The present study was designed to examine the effects of green tea extract (CUMC6335) and epigallocatechin gallate (EGCG) on secretion of catecholamines (CA) in the isolated perfused rabbit adrenal gland. In the presence of CUMC6335 $(200 {\mu}g/mL)$ into an adrenal vein for 60min, CA secretory responses evoked by ACh (5.32 mM), high $K^+$ (56 mM), DMPP $(100{\mu}M \;for\;2min)$, and Bay-K-8644 $(10{\mu}M\;for\;4min)$ from the isolated perfused rabbit adrenal glands were greatly inhibited in a time-dependent fashion. However, EGCG $(10{\mu}g/mL)$ did not affect CA release evoked by ACh, high $K^+$, and Bay-K-8644. CUMC6335 itself failed to affect basal catecholamine output. Taken together, these results demonstrate that CUMC6335 inhibits CA secretion evoked by stimulation of cholinergic nicotinic receptors, as well as the direct membrane depolarization from the isolated perfused rabbit adrenal gland. It is thought that this inhibitory effect of CUMC6335 may be due at least in part to the blocking action of the L-type dihydropyridine calcium channels in the rabbit adrenomedullary chromaffin cells, which is relevant to the cholinergic nicotinic blockade. It seems that there is a big difference in mode of action between CUMC6335 and EGCG.

Inhibition of Oral Epithelial Cell Growth in vitro by Epigallocatechin-3-gallate; Its Modulation by Serum and Antioxidant Enzymes

  • Hong, Jung-Il;Kim, Mi-Ri;Lee, Na-Hyun;Lee, Bo-Hyun
    • Food Science and Biotechnology
    • /
    • v.18 no.4
    • /
    • pp.971-977
    • /
    • 2009
  • The most abundant tea catechin, epigallocatechin-3-gallate (EGCG), has been reported to inhibit cell proliferation and induce apoptosis in many types of cancer cells. In the present study, effects of EGCG on the growth of oral epithelial cells including CAL-27 oral squamous carcinoma cells and dysplastic oral keratinocytes (DOK) were investigated. EGCG inhibited growth of CAL-27 cells and DOK with $IC_{50}$ of 14.4-21.0 and 5.8-14.2 ${\mu}M$ after 24 and 48 hr incubation, respectively. EGCG was significantly less effective in inhibiting DOK growth. The effects of EGCG, however, were dramatically less pronounced in the presence of superoxide dismutase (SOD) and catalase. Inhibitory effects of EGCG on CAL-27 cell growth were also much less pronounced in the presence of fetal bovine serum (FBS). EGCG induced caspase-3 activation in both CAL-27 and DOK cells in a serum free condition without SOD/catalase; in the presence of 10% FBS and SOD/catalase, EGCG, even at 100 ${\mu}M$, did not affect cell growth. The present results indicate that EGCG inhibited oral cell growth with higher potency to more malignant CAL-27 cells than DOK, and the effects were markedly altered by SOD/catalase and serum content in media.

Epigallocatechin Gallate Prevents Autoimmune Diabetes Induced by Multiple Low Doses of Streptozotocin in Mice

  • Song, Eun-Kyung;Hur, Hyeon;Han, Myung-Kwan
    • Archives of Pharmacal Research
    • /
    • v.26 no.7
    • /
    • pp.559-563
    • /
    • 2003
  • Cytokines produced by immune cells infiltrating pancreatic islets have been incriminated as important mediators of $\beta$-cell destruction in insulin-dependent diabetes mellitus. In non insulin-dependent diabetes, cytokines are also associated with impaired $\beta$-cell function in high glucose condition. By the screening of various natural products blocking $\beta$-cell destruction, we have recently found that epigallocatechin gallate (EGCG) can prevent the in vitro destruction of RINm5F cell, an insulinoma cell line, that is induced by cytokines. In that study we suggested that EGCG could prevent cytokine-induced $\beta$-cell destruction by down-regulation of nitric oxide synthase (NOS) through inhibition of NF-kB activation. Here, to verify the in vivo antidiabetogenic effect of EGCG, we examined the possibility that EGCG could also prevent the experimental autoimmune diabetes induced by the treatment of multiple low doses of streptozotocin (MLD-STZ), which is recognized as an inducer of type I autoimmune diabetes. Administration of EGCG (100 mg/day/kg for 10 days) during the MLD-STZ induction of diabetes reduced the increase of blood glucose levels caused by MLD-STZ. Ex vivo analysis of $\beta$-islets showed that EGCG downregulates the MLD-STZ-induced expression of inducible NOS (iNOS). In addition, morphological examination showed that EGCG treatment ameliorated the decrease of islet mass induced by MLD-STZ. In combination these results suggest that EGCG could prevent the onset of MLD-STZ-induced diabetes by protecting pancreatic islets. Our results therefore revealed the possible therapeutic value of EGCG for the prevention of diabetes mellitus progression.

Evaluation for Long-term Stability of EGCG Rich Green Tea Extract (EGTE) (신규 건강기능식품소재 'EGCG 고함유 녹차추출물(EGTE)'의 장기안정성 평가)

  • Cheon, Se In;Heo, Eun Ji;Yoon, Min Ji;Choi, Sang Un;Ryu, Geon-Seek;Ryu, Shi Yong
    • Korean Journal of Pharmacognosy
    • /
    • v.49 no.4
    • /
    • pp.328-335
    • /
    • 2018
  • 'EGCG(epigallocatechin gallate) rich Green Tea extract(EGTE)' was prepared by a convenient chromatographical manner using water and alcohol which was regarded as the most suitable and appropriate process for food manufacturing. The EGCG content in EGTE was estimated above 97%. Analysis of polyphenol components in green tea, i.e., catechin(C), epigallocatechin(EGC), epicatechin(EC), epigallocatechin gallate(EGCG), epicatechin gallate(ECG) and caffeine was performed by HPLC. The optimized HPLC method exhibited a good linearity of calibration curve, accuracy and precision. The long-term stability evaluation of EGTE was carried out with a powdered formulation and solution formulation by estimating the color change and measuring the EGCG content by HPLC analysis for one year. The EGCG content of the powdered EGTE stored in a transparent bottle at room temperature was retained over 97% at the end of the experimental period. The EGCG content of 0.1% water solution of EGTE stored in a transparent bottle at RT were observed to decrease below 30%, whereas that stored at $2^{\circ}C$ retained over 70%, respectively. These results suggested that a powdered formulation could be recommended for the commercialized nutraceutical product of EGTE rather than a solution formulation.

Protective Effects of Green Tea Catechins and (-)-Epigallocatechin gallate on Reactive Oxygen Species-Induced Oxidative Stress (녹차카테킨과 에피갈로카테킨갈레이트의 산화적 스트레스에 대한 억제효과)

  • 윤여표;박종범;허문영
    • YAKHAK HOEJI
    • /
    • v.45 no.1
    • /
    • pp.101-107
    • /
    • 2001
  • Green tea catechins (GTC) and its major component, (-)-epigallocatechin gallate (EGCG) were studied for their protective effects against reactive oxygen species (ROS)-induced oxidative stress. GTC and EGCG skewed the strong antioxidative effects on the lipid peroxidation of ethyl linolate with Fenton's reagent and free radical scavenging effect to DPPH radical generation. They also protected $H_2O$$_2$- or KO$_2$-induced cytotoxicity in CHL cells or mouse splenocytes. These results indicate that GTC and EGCG are capable of protecting the lipid peroxidation, flee radical generation and cytotoxicity induced by ROS. The mechanism of inhibition in ROS-induced cytotoxicity may be due to their antiofidative and free radical scavenging properties. Therefore, GTC and EGCG may be useful chemopreventive agents by protecting the free radical generation which are involved in cancer and aging.

  • PDF

Analysis of Catechin Contents in Commerical Green Tea By HPLC (시판 녹차중 카테킨의 함량 분석)

  • 최성희;이병호;최홍대
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.21 no.4
    • /
    • pp.386-389
    • /
    • 1992
  • The four main tea catechin components (-)-epicatechin (EC), (-)-epigallocatechin (EGC) , (-)-epicatechin gallate (ECg), and (-)-epigallocatechin gallate (EGCg) were analyzed quantitatively from commerical green teas by HPLC. CATechin of the most amounts in steamed and parched teas was EGcg (steamed 1st : 7.54% , parched 1st : 7.88%). Amounts of catechins decreased in the following order : EGCg > EGC>ECg>EC. Almost same tendency of catechin components change of 1st tea and 2nd tea differed to harvesting time being observed in steamed and parched teas. In 2nd tea, amounts of EGCg increased more than in 1st tea. It seems that this change effects on the quality of tea taste.

  • PDF

Inhibitory Effects of Epigallocatechin-3-Gallate on Microsomal Cyclooxygenase-1 Activity in Platelets

  • Lee, Dong-Ha;Kim, Yun-Jung;Kim, Hyun-Hong;Cho, Hyun-Jeong;Ryu, Jin-Hyeob;Rhee, Man Hee;Park, Hwa-Jin
    • Biomolecules & Therapeutics
    • /
    • v.21 no.1
    • /
    • pp.54-59
    • /
    • 2013
  • In this study, we investigated the effect of (-)-epigallocatechin-3-gallate (EGCG), a major component of green tea catechins from green tea leaves, on activities of cyclooxygenase (COX)-1 and thromboxane synthase (TXAS), thromboxane $A_2$ ($TXA_2$) production associated microsomal enzymes. EGCG inhibited COX-1 activity to 96.9%, and TXAS activity to 20% in platelet microsomal fraction having cytochrome c reductase (an endoplasmic reticulum marker enzyme) activity and expressing COX-1 (70 kDa) and TXAS (58 kDa) proteins. The inhibitory ratio of COX-1 to TXAS by EGCG was 4.8. These results mean that EGCG has a stronger selectivity in COX-1 inhibition than TXAS inhibition. In special, a nonsteroid anti-inflammatory drug aspirin, a COX-1 inhibitor, inhibited COX-1 activity by 11.3% at the same concentration ($50{\mu}M$) as EGCG that inhibited COX-1 activity to 96.9% as compared with that of control. This suggests that EGCG has a stronger effect than that of aspirin on inhibition of COX-1 activity. Accordingly, we demonstrate that EGCG might be used as a crucial tool for a strong negative regulator of COX-1/$TXA_2$ signaling pathway to inhibit thrombotic disease-associated platelet aggregation.

Effects of (-)-Epigallocatechin-3-gallate on Brain Infarction and the Activity Change of Matrix Metalloproteinase-9 Induced by Middle Cerebral Artery Occlusion in Mice

  • Qian, Yong-Ri;Kook, Ji-Hyun;Hwang, Shin-Ae;Kim, Do-Kyung;Kim, Jong-Keun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.11 no.3
    • /
    • pp.85-88
    • /
    • 2007
  • Matrix metalloproteinases (MMPs) can degrade a wide range of extracellular matrix components. It has been reported that MMP-9 are activated after focal ischemia in experimental animals. (-)-Epigallocatechin-3-gallate (EGCG), a major constituent of green tea polyphenols, is a potent free radical scavenger and reduces the neuronal damage caused by oxygen free radicals. And it has been known that EGCG could reduce the infarction volume in focal brain ischemia and inhibit MMP-9 activity. To delineate the relationship between the anti-ischemic action and the MMP-9-inhibiting action of EGCG, we investigated the effect of EGCG on brain infarction and the activity of matrix metalloproteinase-9 induced by permanent middle cerebral artery occlusion (pMCAO) in ICR mice. EGCG (40 mg/kg, i.p. $15{\sim}30min$ prior to MCAO) significantly decreased infarction volume at 24 hr after MCAO. GM 6001 (50 mg/kg, i.p. $15{\sim}30min$ prior to MCAO), a MMP inhibitor, also significantly reduced infarction volume. In zymogram, MMP-9 activities began to increase at ipsilateral cortex at 2 hr after MCAO, and the increments of MMP-9 activities were attenuated by EGCG treatment. Western blot for MMP-9 also showed patterns similar to that of zymogram. These findings demonstrate that the anti-ischemic action of EGCG ire mouse focal cerebral ischemia involves its inhibitory effect on MMP-9.

Green Tea Extract (CUMC6335), not Epigallocatechin Gallate, Cause Vascular Relaxation in Rabbits

  • Lim, Dong-Yoon;Baek, Young-Joo;Lee, Eun-Bang
    • Natural Product Sciences
    • /
    • v.10 no.5
    • /
    • pp.228-236
    • /
    • 2004
  • The aim of the present study was to examine whether green tea extract (CUMC6335) affects the blood pressure and the isolated aortic contractility of the rabbit in comparison with one of the most powerful active catechins, epigallocatechin gallate (EGCG). The phenylephrine $(1-10\;{\mu}M)-induced$ contractile responses were greatly inhibited in the presence of CUMC6335 (0.3-1.2 mg/ml). Also, high potassium (56 mM)-induced contractile responses were depressed in high concentration (0.6-1.2 mg/ml), but not affected in low concentration CUMC6335 (0.3 mg/ml). However, epigallocatechin gallate $(EGCG,\;4-12\;{\mu}g/ml)$ did not affect the contractile responses evoked by phenylephrine and high $K^+$. The infusion of CUMC6335 with a rate of 20 mg/kg/30 min made a significant reduction in pressor responses induced by intravenous norepinephrine. However, EGCG (1 mg/kg/30 min) did not affect them. Collectively, these results obtained from the present study suggest that intravenous CUMC6335 causes depressor action in the anesthetized rat at least partly through the blockade of adrenergic ${\alpha}_1-receptors$. CUMC6335 also causes the relaxation in the isolated aortic strips of the rabbit partly via the blockade of adrenergic ${\alpha}_1-receptors$, in addition to the unknown direct mechanism. It seems that there is no species difference in the vascular effect between the rat and the rabbit.