Browse > Article
http://dx.doi.org/10.4062/biomolther.2012.075

Inhibitory Effects of Epigallocatechin-3-Gallate on Microsomal Cyclooxygenase-1 Activity in Platelets  

Lee, Dong-Ha (Department of Biomedical Laboratory Science, College of Biomedical Science and Engineering and Regional Research Center, Inje University)
Kim, Yun-Jung (Department of Biomedical Laboratory Science, College of Biomedical Science and Engineering and Regional Research Center, Inje University)
Kim, Hyun-Hong (Department of Biomedical Laboratory Science, College of Biomedical Science and Engineering and Regional Research Center, Inje University)
Cho, Hyun-Jeong (Department of Biomedical Laboratory Science, College of Medical Science, Konyang University)
Ryu, Jin-Hyeob (Department of Biomedical Laboratory Science, College of Biomedical Science and Engineering and Regional Research Center, Inje University)
Rhee, Man Hee (Laboratory of Veterinary Physiology & Signaling, College of Veterinary Medicine, Kyungpook National University)
Park, Hwa-Jin (Department of Biomedical Laboratory Science, College of Biomedical Science and Engineering and Regional Research Center, Inje University)
Publication Information
Biomolecules & Therapeutics / v.21, no.1, 2013 , pp. 54-59 More about this Journal
Abstract
In this study, we investigated the effect of (-)-epigallocatechin-3-gallate (EGCG), a major component of green tea catechins from green tea leaves, on activities of cyclooxygenase (COX)-1 and thromboxane synthase (TXAS), thromboxane $A_2$ ($TXA_2$) production associated microsomal enzymes. EGCG inhibited COX-1 activity to 96.9%, and TXAS activity to 20% in platelet microsomal fraction having cytochrome c reductase (an endoplasmic reticulum marker enzyme) activity and expressing COX-1 (70 kDa) and TXAS (58 kDa) proteins. The inhibitory ratio of COX-1 to TXAS by EGCG was 4.8. These results mean that EGCG has a stronger selectivity in COX-1 inhibition than TXAS inhibition. In special, a nonsteroid anti-inflammatory drug aspirin, a COX-1 inhibitor, inhibited COX-1 activity by 11.3% at the same concentration ($50{\mu}M$) as EGCG that inhibited COX-1 activity to 96.9% as compared with that of control. This suggests that EGCG has a stronger effect than that of aspirin on inhibition of COX-1 activity. Accordingly, we demonstrate that EGCG might be used as a crucial tool for a strong negative regulator of COX-1/$TXA_2$ signaling pathway to inhibit thrombotic disease-associated platelet aggregation.
Keywords
(-)-Epigallocatechin-3-gallate (EGCG); Aspirin; Microsomal fraction; Cyclooxygenase-1; Thromboxane synthase;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Samokovlisky, A., Rimon, G. and Danon, A. (1999) Differential regulation of cyclooxygenase isoenzymes by cAMP-elevating agents. Eur. J. Pharmacol. 378, 203-211.   DOI   ScienceOn
2 Samuelsson, B., Goldyne, M., Granstrom, E., Mamberg, M., Hammarstrom, S. and Malmsten, C. (1978) Prostaglandin and thromboxanes. Annu. Rev. Biochem. 47, 997-1029.   DOI   ScienceOn
3 Sanmuganathan, P. S., Ghahramani, P., Jackson, P. R., Wallis, E. J. and Ramsay, L. E. (2001) Aspirin for primary prevention of coronary heart disease: safety and absolute benefit related to coronary risk derived from meta-analysis of randomized trials. Heart 85, 265-271.   DOI
4 Schafer, A. I., Levine, S. and Handin, R. I. (1980) Regulation of platelet arachidonic acid oxygenation by cyclic AMP. Blood 56, 853-858.
5 Schwartz, S. M., Heinmark, R. L. and Majesky, M. W. (1990) Developmental mechanisms underlying pathology of arteries. Physiol. Rev. 70, 1177-1209.   DOI
6 Trebino, C. E., Stock, J. L., Gibbons, C. P., Naiman, B. M., Wachtmann, T. S., Umland, J. P., Pandher, K., Lapointe, J. M., Saha, S., Roach, M. L., Carter, D., Thomas, N. A., Durtschi, B. A., McNeish, J. D., Hambor, J. E., Jakobsson, P. J., Carty, T. J., Perez, J. R. and Audoly, L. P. (2003) Impaired inflammatory and pain responses in mice lacking an inducible prostaglandin E synthase. Proc. Nat. Acad. Sci. USA 100, 9044-9049.   DOI   ScienceOn
7 Armstrong, R. A. (1996) Platelet prostanoid receptors. Pharmacol. Ther. 72, 171-191.   DOI   ScienceOn
8 Berenbaum, M. C. (1989) What is synergy? Pharmacol. Rev. 41, 93-141.
9 Carey, F., Menashi, S. and Crawford, N. (1982) Localization of cyclo-oxygenase and thromboxane synthase in human platelet intracellular membranes. Biochem. J. 204, 847-851.   DOI
10 Cho, H. J., Kang, H. J., Kim, Y. J., Lee, D. H., Kwon, H. W., Kim, Y. Y. and Park, H. J. (2012) Inhibition of platelet aggregation by chlorogenic acid via cAMP and cGMP-dependent manner. Blood Coagul. Fibrinolysis 23, 629-635.   DOI
11 Clutton, P, Folts, J. D. and Freedman, J. E. (2001) Pharmacological control of platelet function. Pharmacol. Res. 44, 255-264 .   DOI   ScienceOn
12 Gaddum, J. H. (1940) Pharmacology, Oxford University Press, London, 378-383.
13 Deana, R., Turetta, L., Donella-Deana, A., Dona, M., Brunati, A. M., Demichiel, L. and Garbisa, S. (2003) Green tea epigallocatechin-3-gallate inhibits platelet signaling pathways triggered by both proteolytic and non-proteolytic agonists. Thromb. Haemost. 89, 866-874.
14 DeWitt, D. L., el-Harith, E. A., Kraemer, S. A., Andrews, M. J., Yao, E. F., Amstrong, R. L. and Smith, W. L. (1990) The aspirin and heme-binding sites of ovine and murine prostaglandin endoperoxide synthases. J. Biol. Chem. 265, 5192-5198.
15 FitzGerald, G. A. (1991) Mechanisms of platelet activation: thromboxane $A_{2}$ as an amplifying signal for other agonists. Am. J. Cardiol. 68, 11B-15B.   DOI   ScienceOn
16 Gresele, P., Deckymyn, H., Nenci, G. G. and Vermylen, J. (1991) Thromboxane synthase inhibitors, thromboxane receptor antagonists and dual blockers in thrombotic disorders. Trends Pharmacol. Sci. 12, 158-163.   DOI   ScienceOn
17 Hamberg, M., Svensson, J. and Samuelsson, B. (1975) Thromboxanes: a new group of biologically active compounds derived from prostaglandin endoperoxides. Proc. Natl. Acad. Sci. USA 72, 2994-2998.   DOI   ScienceOn
18 Hussain, T., Gupta, S., Adhami, V. M. and Mukhtar, H. (2005) Green tea constituent epigallocatechin-3-gallate selectively inhibits COX-2 without affecting COX-1 expression in human prostate carcinnoma cells. Int. J. Cancer 113, 660-669.   DOI   ScienceOn
19 Jang, E. K., Azzam, J. E., Dickinson, N. T., Davidson, M. M. and Haslam, R. J. (2002) Roles for both cyclic GMP and cyclic AMP in the inhibition of collagen-induced platelet aggregation by nitroprusside. Br. J. Haematol. 117, 664-675.   DOI   ScienceOn
20 Jeng, J. H., Wu, H. L., Lin, B. R., Lan, W. H., Chang, H. H., Ho, Y. S., Lee, P. H., Wang, Y. J., Wang, J. S., Chen, Y. J. and Chang, M. C. (2007) Antiplatelet effect of sanguinarine is correlated to calcium mobilization, thromboxane and cAMP production. Atherosclerosis 191, 250-258.   DOI   ScienceOn
21 Jennings, L. K. (2009) Role of platelets in atherothrombosis. Am. J. Cardiol. 103, 4A-10A.   DOI   ScienceOn
22 Jin, Y. R., Im, J. H., Park, E. S., Cho, M. R., Han, X. H., Lee, J. J., Lim, Y., Kim, T. J. and Yun, Y. P. (2008) Anti-platelet activity of epigallocatechin gallate is mediated by the inhibition of PLCr2 phosphorylation, elevation of $PGD_{2}$ production, and maintaining calcium-ATPase activity. J. Cardiovasc. Pharmacol. 51, 45-54.   DOI   ScienceOn
23 Lagarde, M., Menashi, S. and Crawford, N. (1981) Localisation of phospholipase $A_{2}$ and diglyceride lipase activities in human platelet intracellular membranes. FEBS. Lett. 124, 23-26.   DOI   ScienceOn
24 Lee, D. H., Cho, H. J., Kang, H. Y., Rhee, M. H. and Park, H. J. (2012) Total saponin from Korean red ginseng inhibits thromboxane $A_{2}$ production associated microsomal enzyme activity in platelets. J. Ginseng. Res. 36, 40-46.   과학기술학회마을   DOI   ScienceOn
25 Lewis, G. P. and Watts, I. S. (1982) Prostaglandin endoperoxides, thromboxane $A_{2}$ and adenosine diphosphate in collagen-induced aggregation of rabbit platelets. Br. J. Pharmacol. 75, 623-631.   DOI   ScienceOn
26 Li, Z., Delaney, M. K., O'Brien, K. A. and Du, X. (2010) Signaling during platelet adhesion and activation. Arteroscler. Thromb. Vasc. Biol. 30, 2341-2349.   DOI   ScienceOn
27 Lill, G., Voit, S., Schor, K. and Weber, A. A. (2003) Complex effects of different green tea catechins on human platelets. FEBS. Lett. 546, 265-270.   DOI   ScienceOn
28 Ok, W. J., Cho, H. J., Kim, H. H., Lee, D. H., Kang, H. Y., Kwon, H. W., Rhee, M. H., Kim, M. and Park H. J. (2012) Epigallocatechin-3-gallate has an anti-platelet effect in a cyclic AMP-dependent manner. J. Atheroscler. Thromb. 19, 337-348.   DOI
29 Malmsten, C., Hamberg, M., Svensson, J. and Samuelsson, B. (1975) Physiological role of an endoperoxide in human platelets: hemostatic defect due to platelet cyclooxygenase deficiency. Proc. Natl. Acad. Sci. USA 72, 1446-1450.   DOI   ScienceOn
30 Mancuso, M., Filosto, M., Bosetti, F., Ceravolo R., Rocchi, A., Tognoni, G, Manca, M. L., Solaini, G., Siciliano, G. and Murri, L. (2003) Decreased platelet cytochrome c oxidase activity is accompanied by increased blood lactate concentration during exercise in patients with Alzheimer disease. Exp. Neurol. 182, 421-426.   DOI   ScienceOn
31 Park, J. B. (2007) Caffedymine from cocoa has COX inhibitory activity suppressing the expression of a platelet activation marker, p-selectin. J. Agric. Food Chem. 55, 2171-2175.   DOI   ScienceOn
32 Patrono, C. (2001) Aspirin: New cardiovascular uses for an old drug. Am. J. Med. 110, 62S-65S .   DOI   ScienceOn
33 Peng, G., Dixon, D. A., Muga, S. J., Smith, T. J. and Wargovich, M. J. (2006) Green tea polyphenol (-)-epigallocatechin-3-gallate inhibits cyclooxygenase-2 expression in colon carcinogenesis. Mol. Carcinog. 45, 309-319.   DOI   ScienceOn
34 Pignone, M. and Williams, C. D. (2010) Aspirin for primary prevention of cardiovascular disease in diabetes mellitus. Nat. Rev. Endocrinol. 6, 619-628.   DOI   ScienceOn
35 Roth, G. J., Stanford, N. and Majerus, P. W. (1975) Acetylation of prostaglandin synthase by aspirin. Proc. Nat. Acad. Sci. USA 72, 3073-3076.   DOI   ScienceOn
36 Ruggeri, Z. M. (2002) Platelets in atherothrombosis. Nat. Med. 8, 1227-1234.   DOI   ScienceOn