• Title/Summary/Keyword: Epigallocatechin-3-gallate(EGCG)

Search Result 149, Processing Time 0.022 seconds

The Effect of Intrathecal Epigallocatechin Gallate on the Development of Antinociceptive Tolerance to Morphine (척수강 내로 투여한 Epigallocatechin Gallate이 모르핀의 항침해 작용에 대한 내성 발생에 미치는 효과)

  • Kim, Woong Mo;Bae, Hong Beom;Choi, Jeong Il
    • The Korean Journal of Pain
    • /
    • v.22 no.3
    • /
    • pp.199-205
    • /
    • 2009
  • Background: A major ingredient of green tea is epigallocatechin-3-gallate (EGCG), and this is known to have many beneficial effects for cancer prevention and also on the cardiovascular system and neurodegenerative diseases through its anti-oxidant, anti-angiogenic, anti-inflammatory, lipid-lowering and neuroprotective properties. Its actions on nociception and the spinal nervous system have been examined in only a few studies, and in these studies EGCG showed an antinociceptive effect on inflammatory and neuropathic pain, and a neuroprotective effect in motor neuron disease. This study was performed to investigate the effect of EGCG on acute thermal pain and the development of morphine tolerance at the spinal level. Methods: The experimental subjects were male Sprague-Dawley rats and the Hot-Box test was employed. A single or double-lumen intrathecal catheter was implanted at the lumbar enlargement for drug administration. An osmotic pump was used to infuse morphine for 7 days for induction of morphine tolerance. EGCG was injected repeatedly for 7 days at twice a day through the intrathecal catheter. Results: Intrathecal EGCG increased the paw withdrawal latency (PWL) after repeated administration for 7 days at twice a day, but this did not happen with administering on single bolus injection of EGCG. In addition, the antinociceptive effect of intrathecal morphine was not affected by co-administration with EGCG. A continuous 7-day infusion of morphine caused a significant decrease of the PWL in the control group (M + S, morphine plus saline). In contrast, intrathecal EGCG injection over 7 days blocked the decrease of the PWL in the experiment group (M + E, morphine plus EGCG). Conclusions: Intrathecal ECGC produced a weak antinociceptive effect for acute thermal pain, but it did not change the morphine's analgesic effect. However, the development of antinociceptive tolerance to morphine was attenuated by administering intrathecal EGCG.

Effects of Epigallocatechin Gallate on the Bioavailability of Nimodipine after Oral and Intravenous Administration in Rats (흰쥐에 경구 및 정맥투여시 에피가로카테친이 니모디핀의 생체이용률에 미치는 영향)

  • Lee, Chong-Ki;Choi, Jun-Shik;Choi, Dong-Hyun
    • YAKHAK HOEJI
    • /
    • v.55 no.4
    • /
    • pp.332-337
    • /
    • 2011
  • The purpose of this study was to investigate the effect of epigallocatechin gallate (EGCG) on the pharmacokinetics of nimodipine in rats. Pharmacokinetic parameters of nimodipine were determined in rats after oral and iv administration of nimodipine with or without EGCG and also the effect of EGCG on the cytochrome P450 (CYP) 3A4 and P-glycoprotein (P-gp) activity were evaluated. EGCG inhibited CYP3A4 and P-gp activity. EGCG significantly increased the area under the plasma concentration-time curve (AUC) and peak plasma concentration ($C_{max}$) of nimodipine. The absolute bioavailability (AB%) and relative bioavailability (RB%) of nimodipine by EGCG were increased by 16% and by 48%, respectively, compared to the control. In contrast, EGCG did not affect the intravenous pharmacokinetics of nimodipine. Based on these results, the increased bioavailability of nimodipine might be due to inhibition of CYP3A4 in the small intestine and/or in the liver and inhibition of P-gp in the small intestine by EGCG.

Epigallocatechin 3-gallate Binds to Human Salivary α-Amylase with Complex Hydrogen Bonding Interactions

  • Lee, Jee-Young;Jeong, Ki-Woong;Kim, Yang-Mee
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.7
    • /
    • pp.2222-2226
    • /
    • 2011
  • Amylase is a digestive enzyme that catalyses the starch into sugar. It has been reported that the green tea flavonoid (or polyphenols) (-)-epigallocatechin 3-gallate (EGCG) inhibits human salivary ${\alpha}$-amylase (HSA) and induced anti-nutritional effects. In this study, we performed docking study for seven EGCG-like flavonoids and HSA to understand the interaction mechanism of HSA and EGCG and suggest new possible flavonoid inhibitors of HSA. As a result, EGCG and (-)-epicatechin gallate (ECG) bind to HSA with complex hydrogen bonding interactions. These hydrogen bonding interactions are important for inhibitory activity of EGCG against HSA. We suggested that ECG can be a potent inhibitor of HSA. This study will be helpful to understand the mechanism of inhibition of HSA by EGCG and give insights to develop therapeutic strategies against diabetes.

Difference of Catechins Extracted Level when Fermented Sun-dried Salt and Green Tea (천일염과 녹차를 발효시켰을 때 Catechin류의 추출량 변화)

  • Yun, Hyun;Oh, Hye-Jong;Choi, Sung-Woo
    • The Journal of the Korea Contents Association
    • /
    • v.12 no.11
    • /
    • pp.278-285
    • /
    • 2012
  • In an experiment in which fermentation was done by adding fungal species that have antibiosis but do not have cellulase, the extraction amount of EGC, EC, EGCG, and ECG increased in all samples that fermented by adding sun-dried salt compared to those that fermented only with green tea after fermenting green tea by mixing it with sun-dried salt. In the analysis conducted according to the days of fermentation, the high extraction amounts of EGC(epigallocatechin), ECG(epicatechin gallate), EC(epicatechin), and EGCG(epigallocatechin gallate) were detected on the second and third day. Furthermore, when fermentation was done by adding ferment bacillus, all types of catechin(EGC, EC, EGCG, ECG) extraction increased in Paenibacillus spp but in Bacillus amyloliquefaciens, EGC and EC decreased while EGCG and ECG increased; whereas in Bacillus pumilus and Bacillus subtilis all types of catechin(EGC, EC, EGCG, ECG) decreased. The results of the above experiment reveal that the largest amount of catechin was extracted from the result which conducted fermentation for three days together with sun-dried salt and Paenibacillus spp in the green tea.

Effect of Epigallocatechin Gallate on Inhibition of Cell Proliferation in MDA-MB-231 Human Breast Cancer Cells (Epigallocatechin Gallate가 인체 유방암 세포인 MDA-MB-231의 세포증식억제에 미치는 영향)

  • Hong, Eun-Jung;Kim, Woo-Kyung
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.36 no.8
    • /
    • pp.983-988
    • /
    • 2007
  • Epigallocatechin gallate (EGCG), a principal antioxidant derived from green tea, is one of the most extensively investigated chemopreventive phytochemicals. However, the effect of EGCG on proliferation in MDA-MB-231 breast cancer cell is not well known. We investigated the effect of EGCG on protein and mRNA expression related to cell proliferation in MDA-MB-231 human breast cancer cell lines. We cultured MDA-MB-231 cells in the presence of 0, 5, 10 and 20 ${\mu}m$ of EGCG. EGCG significantly inhibited the cancer cell proliferation (p<0.05). In MDA-MB-231 huamn breast cancer cell, EGCG lowered $ErbB_2$ and $ErbB_3$ protein as well as mRNA expression. In addition, protein and mRNA expression of phosphorylated Akt and total Akt were significantly decreased (p<0.05). We suggest that EGCG inhibits cell proliferation through $ErbB_2$, $ErbB_3$ and Akt cell signaling.

(-)-Epigallocatechin-3-Gallate Induces Apoptosis and Inhibits Invasion and Migration of Human Cervical Cancer Cells

  • Sharma, Chhavi;Nusri, Qurrat El-Ain;Begum, Salema;Javed, Elham;Rizvi, Tahir A.;Hussain, Arif
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.9
    • /
    • pp.4815-4822
    • /
    • 2012
  • Invasion and metastasis are the major causes of cancer-related death. Pharmacological or therapeutic interventions such as chemoprevention of the progression stages of neoplastic development could result in substantial reduction in the incidence of cancer mortality. (-)-Epigallocatechin-3-gallate (EGCG), a promising chemopreventive agent, has attracted extensive interest for cancer therapy utilizing its antioxidant, anti-proliferative and inhibitory effects on angiogenesis and tumor cell invasion. In this study, we assessed the influence of EGCG on the proliferative potential of HeLa cells by cell viability assay and authenticated the results by nuclear morphological examination, DNA laddering assay and cell cycle analysis. Further we analyzed the anti-invasive properties of EGCG by wound migration assay and gene expression of MMP-9 and TIMP-1 in HeLa cells. Our results indicated that EGCG induced growth inhibition of HeLa cells in a dose- and time-dependent manner. It was observed that cell death mediated by EGCG was through apoptosis. Interestingly, EGCG effectively inhibited invasion and migration of HeLa cells and modulated the expression of related genes (MMP-9 and TIMP-1). These results indicate that EGCG may effectively suppress promotion and progression stages of cervical cancer development.

Green Tea (-) Epigallocatechin-gallate Induces the Apoptotic Death of Prostate Cancer Cells (녹차 (-)Epigallocatechin-gallate에 의한 전립선암 세포주 DU145 세포고사 기전)

  • 이지현;정원훈;박지선;신미경;손희숙;박래길
    • Toxicological Research
    • /
    • v.18 no.2
    • /
    • pp.183-190
    • /
    • 2002
  • The mechanism by which catechin-mediated cytotoxicity against tumor cells remains to be elusive. To elucidate the mechanical mights of anti-tumor effects, (-)epigallocatechin-gallate (EGCG) of catechin was applied to human prostate cancer DU 145 cells. Cell viability was measured by crystal violet staining. Cell lysates were wed to measure the catalytic activity of caspases by using fluorogenic peptide: Ac-DEVD-AMC for caspase-3 protease, Z-IETD-AFC for caspase-8 protease, Ac-LEHD-AFC for caspase-9 protease as substrates. The equal amounts of protein from cell lysate was separated on SDS-PAGE and analyzed by western blotting with anti-Fas antibody, anti-FasL antibody, anti-BCL2 antibody and anti-Bax antibody. (-)EGCG induced the death of DUl45 cells, which was revealed as apoptosis shown by DNA fragmentation. (-)EGCG induced the activation of caspase family cysteine proteases including caspase-3, -8 and -9 proteases in DU145 cells. Also, (-)EGCG increased the expression of Fas and Fas ligand (FasL) protein in DU145 colls. The expression level of BCL2 was decreased in (-)EGCG treated DU145 cells, whereas Bax protein was increased in a time-dependent manner. We suggest that (-)EGCG-induced apoptosis of DU145 cells is mediated by signaling pathway involving caspase family cysteine protease, mitochondrial BCL2-family protein and Fas/FasL.

High-concentration Epigallocatechin Gallate Treatment Causes Endoplasmic Reticulum Stress-mediated Cell Death in HepG2 Cells

  • Ahn, Joon-Ik;Jeong, Kyoung-Ji;Ko, Moon-Jeong;Shin, Hee-Jung;Chung, Hye-Joo;Jeong, Ho-Sang
    • Genomics & Informatics
    • /
    • v.7 no.2
    • /
    • pp.97-106
    • /
    • 2009
  • Epigallocatechin gallate (EGCG), a well-known antioxidant molecule, has been reported to cause hepatotoxicity when used in excess. However, the mechanism underlying EGCG-induced hepatotoxicity is still unclear. To better understand the mode of action of EGCG-induced hepatotoxicity, we examined the effect of EGCG on human hepatic gene expression in HepG2 cells using microarrays. Analyses of microarray data revealed more than 1300 differentially expressed genes with a variety of biological processes. Upregulated genes showed a primary involvement with protein-related biological processes, such as protein synthesis, protein modification, and protein trafficking, while downregulated genes demonstrated a strong association with lipid transport. Genes involved in cellular stress responses were highly upregulated by EGCG treatment, in particular genes involved in endoplasmic reticulum (ER) stress, such as GADD153, GADD34, and ATF3. In addition, changes in genes responsible for cholesterol synthesis and lipid transport were also observed, which explains the high accumulation of EGCG-induced lipids. We also identified other regulatory genes that might aid in clarifying the molecular mechanism underlying EGCG-induced hepatotoxicity.

Antioxidant Enzyme Activity and Anti-Adipogenic Effects of (-)-Epigallocatechin-3-Gallate in 3T3-L1 Cells ((-)-Epigallocatechin-3-Gallate의 3T3-L1 세포에서 항산화 효소 활성 및 지방세포 분화 억제 효과)

  • Kim, Younghwa
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.46 no.11
    • /
    • pp.1293-1299
    • /
    • 2017
  • Obesity contributes to the development of diseases, such as type II diabetes, hypertension, coronary heart disease, and cancer. In addition, oxidative stress caused by reactive oxygen species (ROS) is recognized widely as a contributing factor in the development of chronic diseases. This study was examined the antioxidant and anti-adipogenic activities of epigallocatechin-3-gallate (EGCG) in 3T3-L1 preadipocytes. 3T3-L1 cells were differentiated with or without EGCG for 6 days. The production of glutathione (GSH) and the activities of the antioxidant enzymes, such as glutathione reductase (GR), glutathione peroxidase (GPx), catalase (CAT), and superoxide dismutase (SOD) were measured. EGCG inhibited significantly the lipid accumulation and the expression of adipogenic specific proteins including CCAAT/enhancer binding protein ${\alpha}$ and adipocyte fatty acid binding protein. The production of intracellular ROS was decreased significantly by EGCG in 3T3-L1 cells. EGCG increased the GSH production and the activities of GPx, GR, CAT, and SOD. Moreover, EGCG increased the protein expression of glutamate-cysteine ligase and heme oxygenase-1 in 3T3-L1 cells. These results suggest that EGCG increased the activity and expression of antioxidant enzymes and suppressed the lipid accumulation in 3T3-L1 cells. Therefore, the use of phytochemicals that can maintain the GSH redox balance in adipose tissue could be promising for reducing obesity.

In vitro and in vivo antidiarrhoeal activity of epigallocatechin 3-gallate: a major catechin isolated from indian green tea

  • Bandyopadhyay, Durba;Dutta, Pradeep Kumar;Dastidar, Sujata G;Chatterjee, Tapan Kumar
    • Advances in Traditional Medicine
    • /
    • v.8 no.2
    • /
    • pp.171-177
    • /
    • 2008
  • Epigallocatechin 3-gallate (EGCG), one of the major catechins of tea, was isolated from the decaffeinated, crude methanolic extract of Indian green tea (Camellia sinensis L. O. Kuntze) using chromatographic techniques. EGCG was then screened for antidiarrhoeal activity against 30 strains (clinical isolates) of V. cholerae, which is a well known Gram negative bacillus functioning as the pathogen of cholera. V. cholerae strains like V. cholerae 69, 71, 83, 214, 978, 1021, 1315, 1347, 1348, 569B and ATCC 14033 were inhibited by EGCG at a concentration of $25\;{\mu}g/ml$ whereas V. cholerae 10, 522, 976 were even more sensitive, being inhibited at $10\;{\mu}g/ml$ level. However, V. cholerae DN 16, DN 26, 30, 42, 56, 58, 113, 117, 564, 593, 972 and ATCC 14035 were inhibited at $50\;{\mu}g/ml$ level of EGCG. Only four strains were inhibited at $100\;{\mu}g/ml$. In this study the isolated compound was found to be bacteriostatic in its mechanism of action. In the in vivo experiment using the rabbit ileal loop model two different dosages of EGCG ($500\;{\mu}g/ml$ and $1,000\;{\mu}g/ml$) were able to protect the animals when they were challenged with V. cholerae 569B in the ileum.