Effects of Epigallocatechin Gallate on the Bioavailability of Nimodipine after Oral and Intravenous Administration in Rats

흰쥐에 경구 및 정맥투여시 에피가로카테친이 니모디핀의 생체이용률에 미치는 영향

  • Received : 2011.06.06
  • Accepted : 2011.06.29
  • Published : 2011.08.31

Abstract

The purpose of this study was to investigate the effect of epigallocatechin gallate (EGCG) on the pharmacokinetics of nimodipine in rats. Pharmacokinetic parameters of nimodipine were determined in rats after oral and iv administration of nimodipine with or without EGCG and also the effect of EGCG on the cytochrome P450 (CYP) 3A4 and P-glycoprotein (P-gp) activity were evaluated. EGCG inhibited CYP3A4 and P-gp activity. EGCG significantly increased the area under the plasma concentration-time curve (AUC) and peak plasma concentration ($C_{max}$) of nimodipine. The absolute bioavailability (AB%) and relative bioavailability (RB%) of nimodipine by EGCG were increased by 16% and by 48%, respectively, compared to the control. In contrast, EGCG did not affect the intravenous pharmacokinetics of nimodipine. Based on these results, the increased bioavailability of nimodipine might be due to inhibition of CYP3A4 in the small intestine and/or in the liver and inhibition of P-gp in the small intestine by EGCG.

Keywords

References

  1. Scholz, H. : Pharmacological aspects of calcium channel blockers. Cardiovasc. Drugs Ther. 10, 869 (1997). https://doi.org/10.1007/BF00051613
  2. Epstein, M. and Loutzenhister, R. D. : Effects of calcium antagonists on renal hemodynamics. Am. J. Kidney. Dis. 16, 10 (1990).
  3. Kazda, S., Garthoff, B., Krause, H. P. and Schlossmann, K. : Cerebrovascular effects of the calcium antagonistic dihydropyridine derivative nimodipine in animal experiments. Arzneimittelforschung. 32, 331 (1982).
  4. Maruhn, D., Siefert, H. M., Weber, H., Rämsch, K. and Suwelack, D. : Pharmacokinetics of nimodipine. I. communication: absorption, concentration in plasma and excretion after single administration of [14C] nimodipine in rat, dog and monkey. Arzneimittelforschung. 35, 1781 (1985).
  5. Suwelack, D., Weber, H. and Maruhn, D. : Pharmacokinetics of nimodipine, II. communication: absorption, concentration in plasma and excretion after single administration of [14C] nimodipine in rat, dog and monkey. Arzneimittelforschung. 35, 1787 (1985).
  6. Ramsch, K. D., Ahr, G., Tettenborn, D. and Auer, L. M. : Overview on pharmacokinetics of nimodipine in healthy volunteers and in patients with subarachnoid hemorrhage. Neurochirurgia. 28, 74 (1985).
  7. Scherling, D., Buhner, K., Krause, H. P., Karl, W. and Wünsche, C. : Biotransformation of nimodipine in rat, dog, and monkey. Arzneimittelforschung. 41, 392 (1991).
  8. Guengerich, F. P., Brian, W. R., Iwasaki, M., Sari, M. A., Bäärnhielm, C. and Berntsson, P. : Oxidation of dihydropyridine calcium channel blockers and analogues by human liver cytochrom P-450 IIIA4. J. Med. Chem. 34, 1834 (1991).
  9. Fuhr, U., Maier-Bruggemann, A., Blume, H., Mück, W., Unger, S., Kuhlmann, J., Huschka, C., Zaigler, M., Rietbrock, S. and Staib, A. H. : Grapefruit juice increases oral nimodipine bioavailability. Int. J. Clin. Pharmacol. Ther. 36, 126 (1998).
  10. Zhang, L., Liu, X. D., Xie, L. and Wang, G. J. : P-glycoprotein restricted transport of nimodipine across blood-brain barrier. Acta. Pharmacol. Sin. 24, 903 (2003).
  11. Chu, D. C. and Juneja, L. R. : Chemistry and Applications of Green Tea, in: T. Yamamoto, L. R. Juneja, D. C. Chu and M. Kim, (Eds.), CRC Press, New York, pp. 1322 (1997).
  12. Higdon, J. V. and Frei, B. : Tea catechins and polyphenols: health effects, metabolism, and antioxidant functions. Crit. Rev. Food Sci. Nutr. 43, 89 (2003). https://doi.org/10.1080/10408690390826464
  13. Kuroda, Y. and Hara, Y. : Antimutagenic and anticarcinogenic activity of tea polyphenols. Mutat. Res. 436, 69 (1999). https://doi.org/10.1016/S1383-5742(98)00019-2
  14. Muto, S., Fujita, K., Yamazaki, Y. and Kamataki, T. : Inhibition by green tea catechins of metabolic activation of procarcinogens by human cytochrome P450. Mutat. Res. 479, 197 (2001). https://doi.org/10.1016/S0027-5107(01)00204-4
  15. Jodoin, J., Demeule, M. and Beliveau, R. : Inhibition of the mutldrug resistance P-glycoprotein activity by green tea polyphenols. Biochim. Biophys. Acta. 1542, 149 (2002). https://doi.org/10.1016/S0167-4889(01)00175-6
  16. Hong, J., Lambert, J. D., Lee, S. H., Sinko, P. J. and. Yang, C. S. : Involvement of multidrug resistance-associated proteins in regulating cellular levels of (-)-epigallocatechin-3-gallate and its methyl metabolites. Biochem. Biophys. Res. Commun. 310, 222 (2003). https://doi.org/10.1016/j.bbrc.2003.09.007
  17. Kitagawa, S., Nabekura, T. and Kamiyama, S. : Inhibition of Pglycoprotein function by tea catechins in KB-C2 cells. J.Pharm. Pharmacol. 56, 1001 (2004). https://doi.org/10.1211/0022357044003
  18. Qian, M. and Gallo, J. M. : High-performance liquid chromatographic determination of the calcium channel blocker nimodipine in monkey plasma. J. Chromatogr. 578, 316 (1992). https://doi.org/10.1016/0378-4347(92)80432-P
  19. Crespi, C. L., Miller, V. P. and Penman, B. W. : Microtiter plate assays for inhibition of human, drug-metabolizing cytochromes P450. Anal. Biochem. 248, 188 (1997). https://doi.org/10.1006/abio.1997.2145
  20. Soambia, G., Ranellett, F. O., Panici, P. B., De Vincenzo, R., Bonanno, G., Frrandina, G., Piantelli, M., Bussa, S., Rumi, C., Ciantriglia, M. and Mancuso, S. : Quercetin potentiates the effect of adriamycin in a multidrug-resistant MCF-7 human breast-cancer cell line: P-glycoprotein as a possible target. Cancer Chemother. Pharmacol. 36, 448 (1995). https://doi.org/10.1007/BF00686195
  21. Choi, C. H., Romiti, N., Cervelli, F. and. Tongiani, R. : Effect of flavonols on P-glycoprotein activety in cultured rat hepatocytes. Life Sci. 57, 1741 (1995). https://doi.org/10.1016/0024-3205(95)02152-9
  22. Endicott, J. A. and Ling, V. : The biochemistry of P-glycoprotein mediated multidrug resistance. Ann. Rev. Biochem. 58, 137 (1989). https://doi.org/10.1146/annurev.bi.58.070189.001033
  23. Zhang, H., Wong, C. W., Coville, P. G. and Wanwimolruk, S. : Effect of the grapefruit flavonoid naringen on pharmacokinetics of quinine in rats. Drug Metabol. Drug Interact. 17, 351 (2000).
  24. Kumar, G. N., Walle, U. K. and Walle, T. : Cytochrome P450 3A-mediated human liver microsomal taxol to 6 alphahydroxylation. J. Pharmacol. Exp. Ther. 268, 1160 (1994).
  25. Rahman, A., Korzekwa, K. R., Grogan, J., Gonzalez, F. J. and Harris, J. W. : Selective biotransformation of taxol to 6 alphahydroxytaxol by human cytochrome P450 2C8. Cancer Res. 54, 5543 (1994).
  26. Zhang, D. M., He, Z. W., Liu, X. D., Li, Y., Xie, L., Wang, G. J. and Liu, L. : In-vivo and in-vitro studies on the effect of Huang-Lian-Jie-Du-Tang on nimodipine transport across rat blood-brain barrier. J. Pharm. Pharmacol. 59, 1733 (2007). https://doi.org/10.1211/jpp.59.12.0017
  27. Sandstrom, R., Karlsson, A., Knutson, L. and Lennernas H. : Jejunal absorption and metabolism of R/S-verapamil in humans. Pharm. Res. 15, 856 (1998). https://doi.org/10.1023/A:1011916329863
  28. Wacher, V. J., Wu, C. Y. and Benet, L. Z. : Overlapping substrate specificities and tissue distribution of cytochrome P450 3A and P-glycoprotein: implications for drug delivery and activity in cancer chemotherapy. Mol. Carcinog. 13, 129 (1995). https://doi.org/10.1002/mc.2940130302