• Title/Summary/Keyword: Epidermal growth factor(EGF)

Search Result 269, Processing Time 0.031 seconds

Pyunkang-hwan (Pyunkang-tang) Regulates Hypersecretion of Pulmonary Mucin from Rats with Sulfur Dioxide-Induced Bronchitis and Production and Gene Expression of MUC5AC Mucin from Human Airway Epithelial Cells

  • Seo, Hyo-Seok;Lee, Hyun Jae;Lee, Choong Jae
    • Natural Product Sciences
    • /
    • v.20 no.3
    • /
    • pp.196-201
    • /
    • 2014
  • Pyunkang-hwan (Pyunkang-tang) extract (PGT) is a traditional folk medicine for controlling diverse pulmonary diseases including bronchitis, tonsiltis and pneumonitis. We investigated whether PGT significantly affects secretion, production and gene expression of airway mucin using in vivo and in vitro experimental models reflecting the hypersecretion and/or hyperproduction of mucus observed in inflammatory pulmonary diseases. For in vivo experiment, effect of PGT was checked on hypersecretion of pulmonary mucin in sulfur dioxide-induced bronchitis in rats. For in vitro experiment, confluent NCI-H292 cells were pretreated with PGT for 30 min and then stimulated with EGF (epidermal growth factor), PMA (phorbol 12-myristate 13-acetate) or TNF-${\alpha}$ (tumor necrosis factor-${\alpha}$) for 24 h. The MUC5AC mucin gene expression and mucin protein production were measured by RT-PCR and ELISA. The results were as follows: (1) PGT inhibited the expression of MUC5AC mucin gene induced by EGF, PMA or TNF-${\alpha}$ from NCI-H292 cells, respectively; (2) PGT also inhibited the production of MUC5AC mucin protein induced by the same inducers from NCI-H292 cells, respectively; (3) PGT inhibited secretion of mucin in sulfur dioxide-induced bronchitis rat model. This result suggests that PGT can regulate secretion, production and gene expression of airway mucin.

The Interaction between Epidermal Growth Factor (EGF) and Follicular Stimulating Hormone (FSH) on Nuclear Maturation of Mouse Oocytes by Using Their Inhibitor

  • Cha, Soo-Kyung;Kim, Tae-Hyung;Eum, Jin-Hee;Park, Kang-Hee;Park, Eun-A;Kim, Seung-Bum;Chung, Mi-Kyung;Lee, Dong-Ryul;Ko, Jung-Jae
    • Proceedings of the Korean Society of Embryo Transfer Conference
    • /
    • 2002.11a
    • /
    • pp.113-113
    • /
    • 2002
  • The stimulatory effect of EGF and FSH on oocyte maturation have been reported in various mammalian species. And some reports presented FSH enhanced the effect of EGF on oocyte maturation. But, the interaction between EGF and FSH on nuclear maturation of mammalian oocytes is not fully understood. We observed the effect of EGF and FSH on nuclear maturation during in vitro maturation of mouse oocytes. Also, we examined the interaction between EGF and FSH on nuclear maturation of mouse oocytes using the EGFR inhibitor or FSH inhibitor. Germinal vesicle (GV) stage oocytes were obtained from 3-4weeks PMSG primed BCFI hybrid mice and cultured in TCM-199 medium with 0.4%PVP supplemented with/without EGF (1ng/ml), FSH (1ug/ml), EGFR specific tyrosine kinase inhibitors: Tyrphostin AG 1478 (500nM), MAP kinase kinase inhibitor : U0126 (20uM) or PD 98059 (100uM) for 14-l5hr. Rapid staining method were used for the assessment of nuclear maturation. Nuclear maturation rates of EGF indjor FSH-treated group were significantly higher than those of control group. Treatment of EGFR inhibitor significantly block the nuclear maturation of GV oocyte in EGF-treated group, but it did not block those of GV oocyte in FSH-treated or FSH and EGF-treated group. Treatment of FSH inhibitor(U0126, PD98059) significantly block the nuclear maturation of EGF-treated group, FSH-treated and FSH and EGF-treated group. These results show that EGF has a stimulatory effect as well as different action pathway with FSH on in-vitro maturation of mouse oocyte in vitro. Therefore, further studies will be needed to find the signaling pathway of EGF associated with nuclear maturation.

  • PDF

Regulation of Blastocyst Differentiation by the Serial Exposure of Conconavalin A and $PGE_2$ (Concanavalin A와 $PGE_2$의 순차적 노출에 의한 포배의 분화 조절)

  • Cheon, Yong Pil
    • Development and Reproduction
    • /
    • v.12 no.3
    • /
    • pp.267-274
    • /
    • 2008
  • Differentiation of blastocyst is critical step for implantation and is under the control of regulation factors originated from embryo or reproductive tracts. The sequential communication with those factors is suspected as critical events for differentiation. It has been suggested that intracellular signaling pathways activated by calcium is essential in differentiation of blastocyst. Previously, it was known that concanavalin A (Con A) increase the levels of free calcium in blastocyst stage. However, Con A can not accelerate the hatching, although heparin-binding epidermal growth factor-like growth factor (HB-EGF), a modulator of calcium level, accelerate the hatching of blastocyst. In this study, it was investigated whether Con A or prostaglandin $E_2$ ($PGE_2$) can modulate the differentiation of blastocyst. Con A accelerated the expansion of blastocyst in both 1 hr pulse treatment group and continuous treatment group. However, Con A significantly suppressed the hatching in both groups. The inhibition was significantly strong in continuous treatment group compared with 1 hr pulse treatment group. On the other hand, $PGE_2$ induced the increase the free calcium level, but did not accelerate the expansion. In addition $10{\mu}m\;PGE_2$ inhibited hatching. However, $PGE_2$ could accelerate hatching in Con A pretreated blastocyst. $PGE_2$ also caused the increase of free calcium level in Con A pretreated blastocyst. From these results, it is suggested that changes of the free calcium level induce a different calcium-mediated signaling pathways. In addition, sequential stimulation by signal molecules may triggers the cellular mechanisms for the differentiation of blastocyst.

  • PDF

Therapeutic Effects of Acupuncture and Herbal External Preparation on Healing of Deep Partial Thickness Burn Wound in Rats (심재성 2도 화상이 유발된 흰쥐의 조직 회복에 대한 침 및 한약외용제의 효과)

  • Jo, Hee-Guen;Park, Ae-Ryon;Choi, Jin-Bong
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.24 no.3
    • /
    • pp.87-98
    • /
    • 2014
  • Objectives The present study aimed to investigate the effects of acupuncture and herbal external preparation on wound healing procedure in a deep partial thickness burn model in rats. Methods A total of 40 male Sprague-Dawley rats were allocated into four groups with an equal number in each group: acupuncture treatment group, herbal external perparation group, Silver sulfadiazine dressing group and control group. We describe the effect of acupuncture and herbal external preparation on morphologic and histologic changes, epithelial growth factor (EGF), hematological value of the deep partial thickness burn wound in rats. Results At 21th day after wounding the wound size in acupuncture treat group and herbal external preparation group were decreased more significantly compared to control group. In addition, epidermal regeneration on acupuncture treatment was than other treatment and control group in histological finding. Hematological findings revealed that acupuncture treatment group and herbal external prepartion group was more effective than control group in reducing inflammation response induced by burn. In acupuncture treated group, neutrophil and leukocyte level were significantly decreased compared to other treatment group. Also, this study showed that EGF was obviously expressed in nascent tissue when wounds were treated with the acupuncture and herbal external preparation after injury. In particular, acupuncture treatment group had a significant increase of EGF expression in burn wound healing area when compared with the other treatment groups. Conclusions These findings suggest that acupuncture and herbal external prepration may improve burn wound healing through decreasing inflammatory reaction, increasing tissue regeneration and expression of EGF. Moreover, acupuncture treatment could be more effective in comparison with Silver sulfadiazine dressing.

The Influence of Microinjection of Foreign Gene into the Pronucleus of Fertilized Egg on the Preimplantation Development, Cell Number and Diameter of Rabbit Embryos

  • Makarevich, A.V.;Chrenek, P.;Fl’ak, P.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.2
    • /
    • pp.171-175
    • /
    • 2006
  • The aim of this in vitro study was to test the effect of microinjection (Mi) of foreign gene into the rabbit egg pronucleus and epidermal growth factor (EGF) addition on the blastocyst rate, the cell number and the diameter of embryos, and to determine possible relationships between embryo cell number and embryo diameter. Blastocyst rate was significantly decreased in gene- Mi (G-Mi/E0) group (63.1%) comparing to intact ones (83.5%, $p_1$<0.05). The addition of EGF at 20ng/ml (G-Mi/E20) or 200 ng/ml (GMi/ E200) to gene-Mi embryos did not affect blastocyst rate (65.6 and 55.2% resp.). As a control for Mi, the eggs were microinjected with the same volume of phosphate-buffered solution (PBS-Mi) instead of the gene construct solution. Cell numbers and embryo diameters were measured from embryo images obtained on confocal laser scanning microscope. Bonferroni-modified LSD test showed that the embryo cell number in PBS-Mi group was significantly lower ($p_1$<0.05) and in gene-Mi group was tended to decrease compared with intact embryos. Embryo diameter was not different among experimental groups. No effect of EGF given at any doses both on the cell number and embryo diameter was found. A positive correlation between cell number and embryo diameter was observed in all groups of embryos. Since embryo diameter was not changed under the influence of Mi or EGF addition in this study, this seems to be more conservative characteristics of the embryo morphology. These results suggest that the pronuclear microinjection compromises developmental potential of embryos, decreasing blastocyst rate and embryo cell number, whilst embryo diameter is not affected. No effects of EGF on studied parameters were confirmed. Declined quality of Mi-derived embryos is caused by the microinjection procedure itself, rather than by the gene construct used.

Effects of Low Power Laser for the Expression of EGF after Muscle Crush Injury (저강도레이저 조사가 근육압좌손상 후 척수분절의 EGF 발현에 미치는 영향)

  • Kim Souk-Boum;Kim Dong-Hyun;Nam Ki-Won;Lee Sun-Min;Kim Jin-Sang
    • The Journal of Korean Physical Therapy
    • /
    • v.14 no.2
    • /
    • pp.16-25
    • /
    • 2002
  • Low energy laser irradiation(LELI) therapy in physical therapy is widespread but the mechanisms are not fully understood. The purpose of the present study was to examine the epidermal growth factor(EGF)'s expression within lumbar spinal cord which corresponding with crushed extensor digitorum longus(EDL) of rats after low-power laser irradiation applied. After a crushed injury on the right EDL, low-power laser irradiation was applied by using 2000mW, 2000Hz, 830nm GaAlAs(Gallium-aluminum-arsenide) semiconductor diode laser. The laser treatment was performed with 10 minutes daily for 3days. After EDL crush injury, EGF immunoreactive positive neurons in experimental group were progressively decreased from the first to third days. Especially 1 day subgroup is highly expressed in dorsal horn(Lamina I, II, III) and around of central cannal of spinal cord(Lamina VII). Control group was only expressed slightly at 3 days. This study suggests that LELI stimulate that release and migration of EGF in spinal cord, which distict to wound site, therfore promote wound healing of EDL crush injury.

  • PDF

The Effects of Bone Morphogenetic Protein and Epidermal Growth Factor on the Periodontal Tissue Regeneration (골형태형성단백질 및 상피성장인자가 치주조직 재생에 미치는 영향)

  • Cho, Seong-Hoon;Kwon, Young-Hyuk;Lee, Man-sup;Heer, Yeek
    • Journal of Periodontal and Implant Science
    • /
    • v.30 no.3
    • /
    • pp.505-527
    • /
    • 2000
  • The 3 beagle dogs aged over one and half years and weighed 14 to 16 Kg were utilized in this study. Horizontal furcation defects were induced around 3rd, and 4th premolars bilaterally. BMP-4 in conjunction with EGF and BMP-4 only were applied in the right and left premolars respectively. 1 animal was sacrificed at 2nd week, 4th week, and 8th week, after regenerative surgery respectively. Semi-thin sections using glass-knife were stained with hematoxylin- eosin and trichrome for light microscopic study. The results were as follows : 1 . The long junctional epithelial downgrowth was observed in both area applied with BMP-4 and with BMP-4 and EGF at 2nd week after the surgery. 2 . The extensive regeneration of new bone and cementum was appeared at 4th week and the maturation of bone was observed at 8th week in both area applied with BMP-4 and with BMP-4 and EGF. 3 . The root ankylosis and resorption was presented along the exposed root surface at the coronal 1/3 of defect in the BMP-4 applied site, but it was not shown in the site applied with BMP-4 in conjunction with EGF at the 4th week. At 8th week, the root ankylosis was apparently appeared in the BMP-4 and EGF applied site as well as in the BMP-4 applied site. 4 . The periodontal ligament tissue including Sharpey's fiber inserted into cementum and alveolar bone, was formed along the exposed root surface in the area applied with BMP-4 only, but in the site applied with BMP-4 and EGF, the collagen fiber running parallel to the root surface without Sharpey's fiber, was observed in the periodontal ligament space at 4th and 8th week. Within the above results, BMP-4 had the remarkable capability to regenerate the periodontal tissue and EGF had possibility to prevent from the root ankylosis. Therefore, growth factors including BMP-4 and EGF may have the strong possibility to be utilized in the clinical periodontal treatments.

  • PDF

Apoptosis and Apoptosis Related Gene Expression in Preimplantation Porcine Diploid Parthenotes Developing In Vitro (착상전 이배체 단위발생 돼지난자의 체외 배양에서 세포사멸과 세포사멸에 관여하는 유전자의 발현에 관한 연구)

  • X. S. Cui;Kim, I. H.;Kim, N. H.
    • Korean Journal of Animal Reproduction
    • /
    • v.27 no.2
    • /
    • pp.169-177
    • /
    • 2003
  • This study was conducted to determine effects of polyvinyl alcohol (PVA), fetal bovine serum (FBS) bovine serum albumin (BSA) and epidermal growth factor (EGF) on blastocoel formation, total cell number, apoptosis and apoptosis-related gene expression of porcine diploid parthenotes developing in vitro. The addition of 0.4% BSA to the culture medium enhanced the development of 2-cell stage parthenotes to the blastocysts stage (P<0.01). FBS reduced cell numbers of blastocysts (P<0.01) and increased percentage of apoptosis in the blastocysts (P<0.001). However, while BSA increased cell numbers, it did so only when EGF was present. Either agent on its own had no effect. Similarly, apoptosis in the blastocysts was not influenced by either agent on its own but was reduced when both BSA and EGF were present. Furthermore, semi-quantitative reverse-transcriptase polymerase chain reaction revealed that EGF enhanced the mRNA expression of Bcl-xL in the presence of 0.4% BSA but BSA and EGF alone had no effect, and EGF and/or BSA did not influence Bak gene expression in the blastocyst stage parthenotes. However FBS reduced Bcl-xL mRNA expression (P <0.05) and enhanced Bak expression. This result suggests that apoptosis related genes expression is significantly affected by supplements, which may result in alteration of apoptosis and embryo viability of porcine embryos developing in vitro.

Delphinidin Suppresses Angiogenesis via the Inhibition of HIF-1α and STAT3 Expressions in PC3M Cells (전립선 암세포에서 delphinidin에 의한 HIF-1α와 STAT3 억제를 통한 혈관내피 성장 인자 발현 저해 효과)

  • Kim, Mun-Hyeon;Kim, Mi-Hyun;Park, Young-Ja;Chang, Young-Chae;Park, Yoon-Yub;Song, Hyun-Ouk
    • Korean Journal of Food Science and Technology
    • /
    • v.48 no.1
    • /
    • pp.66-71
    • /
    • 2016
  • Delphinidin is a blue-red pigment and one of the major anthocyanins in plants. It plays an important role in anti-oxidant, anti-inflammatory, anti-mutagenic and anti-cancer properties. In this study, we investigated the inhibitory effects of delphinidin on vascular endothelial growth factor (VEGF) gene expression, an important factor involved in angiogenesis and tumor progression in human prostate cancer. Delphinidin decreased levels of epidermal growth factor (EGF)-induced VEGF mRNA expression in PC-3M cells. The expression of the EGF-induced hypoxia inducible factor-$1{\alpha}$ (HIF-$1{\alpha}$) and signaling transducer and activator of transcription 3 (STAT3) proteins, which are the major transcription factors for VEGF, were inhibited by delphinidin. In addition, delphinidin decreases HRE-promoter reporter gene activity, suggesting that delphinidin can suppress the transcription of HIF-$1{\alpha}$ under EGF induction, leading to a decrease in the expression of VEGF. Delphinidin specifically suppressed the phosphorylation of Akt, p70S6K, and 4EBP1, but not the phosphorylation of EGFR. Therefore, our results suggest that delphinidin may inhibit human prostate cancer progression and angiogenesis by inhibiting HIF-$1{\alpha}$, STAT3 and VEGF gene expression.

Bidirectional Cross-talk Between Estrogen Receptor and Growth Factor Receptors in Breast Cancer Cell (유방암세포에서 에스트로겐 수용체와 성장인자 수용체 사이의 양방향 상호작용)

  • Min, Gyesik
    • Journal of Life Science
    • /
    • v.28 no.2
    • /
    • pp.265-273
    • /
    • 2018
  • Estrogen (E2) is involved in the development and progression of breast cancer and is mediated by estrogen receptor (ER). ER plays important roles in cellular proliferation, migration, invasion and causing drug resistance through diverse cross-talks with epidermal growth factor receptor (EGFR) and insulin-like growth factor-1 receptor (IGF-1R) signaling pathways in breast cancer cells. Breast cancer is caused mainly by break-down of homeostasis of endocrine signaling pathways especially by the uncontrolled expression and increased activities of E2/IGF-1/EGF, ER/G-protein estrogen receptor (GPER)/IGF-1R/EGFR and their intracellular signaling mediators. These changes influence the complex cross-talk between E2 and growth factors' signaling, eventually resulting in the progression of cancer and resistance against endocrine regulators. Thus, elucidation of the molecular mechanisms in stepwise of the cross-talk between E2 and growth factors will contribute to the customized treatment according to the diverse types of breast cancer. In particular, as strategies for the treatment of breast cancer with diverse genotypes and phenotypes, there can be use of aromatase inhibitors and blockers of E2 action for the ER+ hormone-dependent breast cancer cells and use of IGF-1R/EGFR activity blockers for suppression of cancer cell proliferation from the cross-talk between E2 and growth factors. Furthermore, changes in the expression of the ECM molecules regulated by the cross-talk between ER and EGFR/IGF-1R can be used for the targeted therapeutics against the migration of breast cancer cells. Therefore, it is required for the cross-talk among the signaling pathways of ER, GPER, IGF-1R and EGFR concerning cancer progression to be elucidated in more detail at the molecular level.