• Title/Summary/Keyword: Eosin-glutathione

Search Result 17, Processing Time 0.028 seconds

Analysis of S-glutathionylated proteins during adipocyte differentiation using eosin-glutathione and glutaredoxin 1

  • Hwang, Sungwon;Iram, Sana;Jin, Juno;Choi, Inho;Kim, Jihoe
    • BMB Reports
    • /
    • v.55 no.3
    • /
    • pp.154-159
    • /
    • 2022
  • Protein S-glutathionylation is a reversible post-translational modification on cysteine residues forming a mixed disulfide with glutathione. S-glutathionylation, not only protects proteins from oxidation but also regulates the functions of proteins involved in various cellular signaling pathways. In this study, we developed a method for the detection of S-glutathionylated proteins (ProSSG) using eosin-glutathione (E-GSH) and mouse glutaredoxin 1 (mGrx1). ProSSG was efficiently and specifically labeled with E-GSH to form ProSSG-E via thiol-disulfide exchange. ProSSG-E was readily luminescent allowing the detection of ProSSG with semi-quantitative determination. In addition, a deglutathionylation enzyme mGrx1 specifically released E-GSH from ProSSG-E, which increased fluorescence allowing a sensitive determination of ProSSG levels. Application of the method to the adipocyte differentiation of 3T3-L1 cells showed specific detection of ProSSG and its increase upon differentiation induction, which was consistent with the result obtained by conventional immunoblot analysis, but with greater specificity and sensitivity.

Protective Mechanism of Nitric Oxide and Mucus against Ischemia/Reperfusion-Induced Gastric Mucosal Injury

  • Kim, Hye-Young;Nam, Kwang-Soo;Kim, Kyung-Hwan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.2 no.4
    • /
    • pp.511-519
    • /
    • 1998
  • This study investigated the role of nitric oxide on the oxidative damage in gastric mucosa of rats which received ischemia/reperfusion and its relation to mucus. Nitric oxide synthesis modulators such as L-arginine and $N^G-nitro-L-arginine$ methyl ester, and sodium nitroprusside, a nitric oxide donor, were injected intraperitoneally to the rats 30 min prior to ischemia/reperfusion which was induced by clamping the celiac artery and the superior mesenteric artery for 30 min and reperfusion for 1 h. Lipid peroxide production, the contents of glutathione and mucus, and glutathione peroxidase activities of gastric mucosa were determined. Histological observation of gastric mucosa was performed by using hematoxylin-eosin staining and scanning electron microscopy. The result showed that ischemia/reperfusion increased lipid peroxide production and decreased the contents of glutathione and mucus as well as glutathione peroxidase activities of gastric mucosa. Ischemia/reperfusion induced gastric erosion and gross epithelial disruption of gastric mucosa. Pretreatment of L-arginine, a substrate for nitric oxide synthase, and sodium nitroprusside prevented ischemia/reperfusion-induced alterations of gastric mucosa. However, $N^G-nitro-$ L- arginine methyl ester, a nitric oxide synthase inhibitor, deteriorated oxidative damage induced by ischemia/reperfusion. In conclusion, nitric oxide has an antioxidant defensive role on gastric mucosa by maintaining mucus, glutathione, and glutathione peroxidase of gastric mucosa.

  • PDF

Ginseng essence, a medicinal and edible herbal formulation, ameliorates carbon tetrachloride-induced oxidative stress and liver injury in rats

  • Lu, Kuan-Hung;Weng, Ching-Yi;Chen, Wei-Cheng;Sheen, Lee-Yan
    • Journal of Ginseng Research
    • /
    • v.41 no.3
    • /
    • pp.316-325
    • /
    • 2017
  • Background: Ginseng essence (GE) is a formulation comprising four medicinal and edible herbs including ginseng (Panax ginseng), American ginseng (Panax quinquefolius), lotus seed (Nelumbo nucifera), and lily bulb (Lilium longiflorum). This study was aimed at investigating the hepatoprotective effect of GE against carbon tetrachloride ($CCl_4$)-induced liver injury in rats. Methods: We treated Wistar rats daily with low, medium, and high [0.625 g/kg body weight (bw), 1.25 g/kg bw, and 3.125 g/kg bw, respectively] doses of GE for 9 wk. After the 1st wk of treatment, rats were administered 20% $CCl_4$ (1.5 mL/kg bw) two times a week to induce liver damage until the treatment ended. Results: Serum biochemical analysis indicated that GE ameliorated the elevation of aspartate aminotransferase and alanine aminotransferase and albumin decline in $CCl_4$-treated rats. Moreover, $CCl_4$-induced accumulation of hepatic total cholesterol and triglyceride was inhibited. The hepatoprotective effects of GE involved enhancing the hepatic antioxidant defense system including glutathione, glutathione peroxidase, glutathione reductase, glutathione S-transferase, superoxide dismutase, and catalase. In addition, histological analysis using hematoxylin and eosin and Masson's trichrome staining showed that GE inhibited $CCl_4$-induced hepatic inflammation and fibrosis. Furthermore, immunohistochemical staining of alpha-smooth muscle actin indicated that $CCl_4$-triggered activation of hepatic stellate cells was reduced. Conclusion: These findings demonstrate that GE improves $CCl_4$-induced liver inflammation and fibrosis by attenuating oxidative stress. Therefore, GE could be a promising hepatoprotective herbal formulation for future development of phytotherapy.

Blood Haematology, Serum Thyroid Hormones and Glutathione Peroxidase Status in Kacang Goats Fed Inorganic Iodine and Selenium Supplemented Diets

  • Aghwan, Z.A.;Sazili, A.Q.;Alimon, A.R.;Goh, Y.M.;Hilmi, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.26 no.11
    • /
    • pp.1577-1582
    • /
    • 2013
  • The effects of dietary supplementation of selenium (Se), iodine (I), and a combination of both on the blood haematology, serum free thyroxine (FT4) and free triiodothyronine (FT3) hormones and glutathione peroxidase enzyme (GSH-Px) activity were examined on twenty four (7 to 8 months old, $22{\pm}1.17$ kg live weight) Kacang crossbred male goats. Animals were randomly assigned to four dietary treatments (6 animals in each group). Throughout 100 d of feeding trial, the animals of control group (CON) received a basal diet, while the other three groups were offered basal diet supplemented with 0.6 mg/kg diet DM Se (SS), or 0.6 mg/kg diet DM I (PI), or a combination of both Se and I, each at 0.6 mg/kg diet DM (SSPI). The haematological attributes which are haemoglobin (Hb), red blood cell (RBC), packed cell volume (PCV), mean cell volume (MCV), white blood cells (WBC), band neutrophils (B Neut), segmented neutrophils (S Neut), lymphocytes (Lymph), monocytes (Mono), eosinophils (Eosin) and basophils (Baso) were similar among the four treatment groups, while serum levels of Se and I increased significantly (p<0.05) in the supplemented groups. The combined dietary supplementation of Se and I (SSPI) significantly increased serum FT3 in the supplemented animals. Serum GSH-Px activity increased significantly in the animals of SS and SSPI groups. It is concluded that the dietary supplementation of inorganic Se and I at a level of 0.6 mg/kg DM increased serum Se and I concentration, FT3 hormone and GSH-Px activity of Kacang crossbred male goats.

Enzyme hydrolysate of silk protein suppresses tert-butyl hydroperoxide-induced hepatotoxicity by enhancing antioxidant activity in rats

  • Suh, Hyung Joo;Kang, Bobin;Kim, Chae-Young;Choi, Hyeon-Son
    • Food Science and Preservation
    • /
    • v.24 no.4
    • /
    • pp.550-558
    • /
    • 2017
  • The purpose of current study is to investigate the beneficial effect of enzyme (Alcalase) hydrolysates of silk protein in rat. Alcalase-treated silk protein hydrolysate (ATSH) itself did not show any cytotoxicity on the hepatic tissues and blood biochemistry, similar to the normal condition. ATSH played a protective role in tert-butyl hydroperoxide (t-BHP)-induced hepatotoxicity and liver damage. The values of AST (aspartate aminotransferase) and ALT (alanine aminotransferase), which are the indicators of the liver function, were effectively alleviated with the ATSH treatment in a dose dependent manner. The level of Lactate dehydrogenase (LDH) and Malondialdehyde (MDA), which were increased with t-BHP treatment, were significantly reduced by ATSH. High dose of ATSH (2 g/kg) reduced the t-BHP-induced LDH release by 48%. Antioxidant and antioxidant enzymes in liver cells were significantly increased by ATSH treatment in their level and activities. ATSH (2 g/kg) increased glutathione (GSH), an intracelluar antioxidant, by 2.5-fold compared with the t-BHP treated group. The activities of glutathione-s-transferase (GST), superoxide dismutase (SOD), and catalase were also elevated by 38%, 60%, and 45%, respectively, with ATSH (2 g/kg) treatment. The antioxidative effect of ATSH was recapitulated to the protection from t-BHP induced liver damages in hematoxylin and eosin (H&E) staining. Thus, ATSH might be used as a hepatoprotective agent.

Protective effect of ultrasonication-processed ginseng berry extract on the D-galactosamine/lipopolysaccharide-induced liver injury model in rats

  • Nam, Yoonjin;Bae, Jinhyung;Jeong, Ji Hoon;Ko, Sung Kwon;Sohn, Uy Dong
    • Journal of Ginseng Research
    • /
    • v.42 no.4
    • /
    • pp.540-548
    • /
    • 2018
  • Background: Acute hepatic failure is a life-threatening critical condition associated with rapid deterioration of liver function and liver transplantation. Several studies have shown that Panax ginseng Mayer has antidiabetic and hepatoprotective effects. However, the hepatoprotective effect of ginseng berry is still unveiled. In this study, we evaluated the hepatoprotective effects of ultrasonication-processed ginseng berry extract (UGBE) on acute hepatic failure model in rats. Methods: Ginseng berry extract (GBE) was ultrasonically processed. The GBE, silymarin, and UGBE were orally administered to male Sprague-Dawley rats for 4 wk. Twenty-four h after the last administration, rats were challenged with D-galactosamine (D-GalN)/lipopolysaccharide (LPS). Results: After ultrasonication, the component ratio of ginsenosides Rg2, Rg3, Rh1, Rh4, Rk1, Rk3, and F4 in GBE had been elevated. Administration of UGBE significantly increased the survival rate of D-GalN/LPS-challenged rats. Pretreatment with UGBE significantly decreased serum alanine aminotransferase, aspartate aminotransferase, and total bilirubin levels in D-GalN/LPS-challenged rats in a dose-dependent manner. The levels of enzymatic markers for oxidative stress (superoxide dismutase, glutathione peroxidase, catalase, and glutathione) were increased by UGBE treatment in a dose-dependent manner. Tumor necrosis factor alphalevel, inducible nitric oxide synthase activities, and nitric oxide productions were reduced by UGBE treatment. In addition, hemeoxygenase-1 levels in liver were also significantly increased in the UGBE-treated group. The protein expression of toll-like receptor 4 was decreased by UGBE administration. Hematoxylin and eosin staining results also supported the results of this study showing normal appearance of liver histopathology in the UGBE-treated group. Conclusion: UGBE showed a great hepatoprotective effect on D-GalN/LPS-challenged rats via the toll-like receptor 4 signaling pathway.

The Comparison of Efficacy of Glutathione S-transeferase Placental Form Positive and Iron-Resistant Lesions in the Detection of Hepatocarcinogens (간발암성 물질 검색에 있어서 Glutathione S-transeferase Placental Form 양성 병소와 철 저항 병소의 유효성 비교 연구)

  • 강경선;김형진;이영순
    • Journal of Food Hygiene and Safety
    • /
    • v.6 no.1
    • /
    • pp.1-12
    • /
    • 1991
  • Fischer 344 rats aged six weeks were diYided into four groups and group 1, 2, and 3 of rats were given an intraperitoneal injection of diethylnitrosamine at 200 mg/kg body weight and group 4 was given saline alone. Two weeks after beginning of the experiment, group 1 and 2 of rats were begun to feed on diets containing 0.02% 2-acetylaminofluorene as a promoter for four weeks. Three weeks after beginning of the experiment, all groups were performed partial hepatectomy. During the last two weeks, group 1 and 3 of rats were received subcutaneously 3 consecutive weekly doses of iron dextran at 0.125 ml/100 g body weight. Subcutaneous injection of iron dextran resulted in hepatic siderosis in group 1 and 3 of rats. Pre neoplastic nodules were identified histopathologically by two markers, resistance to exogenous iron accumulation and glutathione S-transeferase placental form (GST-P) activity, while early carcinogen induced foci were hardly resistant to iron accumulation and though a few lesions were identified, it could hardly be distincted from normal hepatocytes of surroundings. However, GST-P positive nodules as well as foci were clearly distincted from normal hepatic cells of surroundings. In the quantitative analysis of carcinogen-induced nodules and foci, more lesions were detected by immunohistochemical method for GST-P than by prussian blue staining for resistant to iron accumulation. It is concluded that immunohistochemical marker for GST-P is more sensitive and reliable than iron-resistance marker, and that iron-resistance is not useful marker for early detection of carcinogen-induced hepatic lesions.

  • PDF

Antioxidant and hepatoprotective effects of Korean ginseng extract GS-KG9 in a D-galactosamine-induced liver damage animal model

  • Jo, Yun Ho;Lee, Hwan;Oh, Myeong Hwan;Lee, Gyeong Hee;Lee, You Jin;Lee, Ji Sun;Kim, Min Jung;Kim, Won Yong;Kim, Jin Seong;Yoo, Dae Seok;Cho, Sang Won;Cha, Seon Woo;Pyo, Mi Kyung
    • Nutrition Research and Practice
    • /
    • v.14 no.4
    • /
    • pp.334-351
    • /
    • 2020
  • BACKGROUND/OBJECTIVES: This study was designed to investigate the improvement effect of white ginseng extract (GS-KG9) on D-galactosamine (Ga1N)-induced oxidative stress and liver injury. SUBJECTS/METHODS: Sixty Sprague-Dawley rats were divided into 6 groups. Rats were orally administrated with GS-KG9 (300, 500, or 700 mg/kg) or silymarin (25 mg/kg) for 2 weeks. The rats of the GS-KG9- and silymarin-treated groups and a control group were then intraperitoneally injected Ga1N at a concentration of 650 mg/kg for 4 days. To investigate the protective effect of GS-KG9 against GalN-induced liver injury, blood liver function indicators, anti-oxidative stress indicators, and histopathological features were analyzed. RESULTS: Serum biochemical analysis indicated that GS-KG9 ameliorated the elevation of aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), and lactate dehydrogenase (LDH) in GalN-treated rats. The hepatoprotective effects of GS-KG9 involved enhancing components of the hepatic antioxidant defense system, including glutathione, glutathione peroxidase (GPx), superoxide dismutase (SOD), and catalase (CAT). In addition, GS-KG9 treatment inhibited reactive oxygen species (ROS) production induced by GalN treatment in hepatocytes and significantly increased the expression levels of nuclear factor erythroid-2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) proteins, which are antioxidant proteins. In particular, by histological analyses bases on hematoxylin and eosin, Masson's trichrome, α-smooth muscle actin, and transforming growth factor-β1 staining, we determined that the administration of 500 mg/kg GS-KG9 inhibited hepatic inflammation and fibrosis due to the excessive accumulation of collagen. CONCLUSIONS: These findings demonstrate that GS-KG9 improves GalN-induced liver inflammation, necrosis, and fibrosis by attenuating oxidative stress. Therefore, GS-KG9 may be considered a useful candidate in the development of a natural preventive agent against liver injury.

Protective Effect of Myeongganbo Extract on Acetaminophen-Induced Liver Injury (명간보(明肝補) 추출물의 Acetaminophen 유도 간 손상에 대한 보호효과)

  • Kim, Hong-Jun;Mok, Ji-Ye;Park, Kwang-Hyun;Jeon, In-Hwa;Kim, Hyeon-Soo;Hwang, Sung-Yeoun;Jang, Seon-Il
    • The Korea Journal of Herbology
    • /
    • v.27 no.2
    • /
    • pp.85-91
    • /
    • 2012
  • Objective : Myeongganbo (MGB) composited with Hovenia Semen, Puerariae Radix and Dioscoreae Rhizoma is the prescription for protection of liver function. The purpose of this study was to investigate the effects of MGB extract against acetaminophen (APAP)-induced liver injury in mice. Methods : MGB extract was prepared by extracting with hot distilled water. The extract was freeze-dried following filtration through vacuum distillation system. Mice fasted for overnight were orally administrated with or without MGB extract of different doses (25-200 mg/kg/day). After 30 min, APAP was orally applied with a single dose (400 mg/kg). The levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were measured in plasmas of mice. Glutathione (GSH), glutathione peroxidase GSH-px), cyclooxygenase-2 (COX-2) activity and tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$) level were investigated in liver homogenates. Liver sections were stained with haematoxylin & eosin, anti-TNF-${\alpha}$ and anti-mouse COX-2 antibodies. Results : APAP treatment remarkably increased AST and ALT activities in plasma but inhibited GSH and GSH-px levels in liver homogenates. Also, liver injury was significantly accelerated by APAP treatment. Furthermore, APAP remarkably elevated COX-2 activity and TNF-${\alpha}$ levels in liver homogenates. However, administration of MGB extract was able to counteract these effects. Histological studies provided supportive evidence for biochemical and molecular analysis Conclusions : These results suggest that MGB extract has potent hepatoprotective effect against APAP-induced liver injury, these properties may contribute to liver disease care.

Effect of SAL5 on chronic ethanol-induced fatty liver model (흰쥐에서 SAL5의 알코올성 지방간 형성에 미치는 영향)

  • Kim, Bok-Kyu;Yang, Won-Kyung;Park, Yang-Chun;Jung, Ga-Young;Shin, Eun-Ju;Do, Seon-Gil;Kim, Seung-Hyung
    • The Korea Journal of Herbology
    • /
    • v.33 no.1
    • /
    • pp.17-26
    • /
    • 2018
  • Objective : In this study, we investigated the effect of SAL5(mixing extracts of Schisandra chinensis Baillon, Artemisia capillaris Thunb., and Aloe vera Linne) on chronic ethanol-induced fatty liver model. Methods : Sprague-Dawley male rats were fed Liber-DeCarli (normal), ethanol liquid diet (control), SAL5 (200 mg/kg). We administrated the SAL5 on chronic ethanol-induced fatty liver model for 5 weeks. We measured alkaline phosphtase (ALP), alanine transminase (ALT), aspartate transminase (AST) and ${\gamma}-glutamyl$ transpeptase (${\gamma}-GTP$) in serum and triglyceride (TG), superoxide dismutase (SOD), catalase, glutathione (GSH) and malondialdehyde (MDA) level in liver. Liver histopathology was examined by Hematoxylin-eosin and Oil red O staining of the fixed liver tissues. Real-time PCR was performed to measure the mRNA expression of inflammatory cytokines and MMP-2, MMP-9. Results : SAL5 administration resulted in significantly decreased liver marker enzymes activities of alanine transminase (ALT), ${\gamma}-glutamyl$ transpeptase (${\gamma}-GTP$) in serum and triglyceride (TG) activities in liver. The control group decreased the activities of superoxide dismutase (SOD), catalase (CAT) with the reduced level of glutathione (GSH) in liver. On the other hand, SAL5 group increased the activities of SOD, CAT and the level of GSH. SAL5 delayed the development of an alcoholic fatty liver by reversing fat accumulation in the liver, as evidenced in histological observations. The gene expression of mRNA were significantly decreased at the $IL-1{\beta}$, $TNF-{\alpha}$, NOS-II and MMP-2 by SAL5. Conclusions : These results indicate that SAL5 might have protective effect chronic ethanol-induced fatty liver models.