• Title/Summary/Keyword: Enzyme properties

Search Result 1,500, Processing Time 0.024 seconds

Characterization of Sporulation-Specific Glucoamylase of Saccharomyces diastaticus (Saccharomyces diastaticus의 포자형성 특이 글루코아밀라제의 특성)

  • Kim, Eun-Ju;Ahn, Jong-Seog;Kang, Dae-Ook
    • Journal of Life Science
    • /
    • v.20 no.5
    • /
    • pp.683-690
    • /
    • 2010
  • The yeast strains of Saccharomyces diastaticus produce one of three isozymes of an extracellular glucoamylase I, II or III, a type of exo-enzyme which can hydrolyse starch to generate glucose molecules from non-reducing ends. These enzymes are encoded by the STA1, STA2 and STA3 genes. Another gene, sporulation-specific glucoamylase (SGA), also exists in the genus Saccharomyces which is very homologous to the STA genes. The SGA has been known to be produced in the cytosol during sporulation. However, we hypothesized that the SGA is capable of being secreted to the extracellular region because of about 20 hydrophobic amino acid residues at the N-terminus which can function as a signal peptide. We expressed the cloned SGA gene in S. diastaticus YIY345. In order to compare the biochemical properties of the extracellular glucoamylase and the SGA, the SGA was purified from the culture supernatant through ammonium sulfate precipitation, DEAE-Sephadex A-50, CM-Sephadex C-50 and Sephadex G-200 chromatography. The molecular weight of the intact SGA was estimated to be about 130 kDa by gel filtration chromatography with high performance liquid chromatography (HPLC) column. Sodium dedecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) analysis showed it was composed of two heterogeneous subunits, 63 kDa and 68 kDa. The deglycosylation of the SGA generated a new 59 kDa band on the SDS-PAGE analysis, indicating that two subunits are glycosylated but the extent of glycosylation is different between them. The optimum pH and temperature of the SGA were 5.5 and $45^{\circ}C$, respectively, whereas those for the extracellular glucoamylase were 5.0 and $50^{\circ}C$. The SGA were more sensitive to heat and SDS than the extracellular glucoamylase.

The Effect of Schizandrae Fructus Extract on Alcohol Fermentation and Enzyme Activities of Saccharomyce cerevisiae (오미자(Schizandra chinensis B.) 추출물이 Saccharomyces cerevisiae의 알콜발효 및 효소 활성에 미치는 영향)

  • Choi, Jae-Thun;Lee, Si-Kyung;Joo, Hyun-Kyu
    • Applied Biological Chemistry
    • /
    • v.38 no.3
    • /
    • pp.278-282
    • /
    • 1995
  • The effect of Schizandrae fructus extract on the physiological properties of Saccharomyces cerevisiae was investigated. S. cerevisiae was inoculated into glucose broth, added with Schizandrae fructus extract, 0, 0.01, 0.1, 0.5 and 1%(w/v), respectively. And a 96 hours incubation was followed to investigate the changes in the growth, alcohol production, alcohol dehydrogenase and pyruvate decarboxylase activities of S. cerevisiae. The growth of S. cerevisiae was more pronounced in the broth containing 0.1 and 0.OlfS Schizandrae fructus extract than in the control. The growth was, however, inhibited in the broth containing 0.5 and 1% of the extract. The content of alcohol produced by S. cerevisiae also showed very similiar results with those of the yeast growth by addition of Schizandrae fructus extract. Alcohol dehydrogenase activities of S. cerevisiae cultured in broth treated with the extract of 0.1% and 0.01% increased by 25% and 18% than those in control group. Pyruvate decarboxylase activities in 0.1% and 0.01% treatments increased to 1.32 and 1.26 times. The activities in 0.5% and 1% treatments, however, decreased by 30% and 44%.

  • PDF

Purification and Properties of ${\beta}-Mannanases$ from Germinated Guar Bean (${\beta}-Mannanase$ 군(群)의 정제(精製) 및 그들의 성질(性質)에 관(關)한 연구(硏究))

  • Lee, Su-Rae
    • Applied Biological Chemistry
    • /
    • v.7
    • /
    • pp.1-13
    • /
    • 1966
  • 1) Three ${\beta}-1$, 4-mannanases were isolated from germinated guar bean through extraction, ammonium sulfate fractionation, column chromatography on cellulose derivatives and gel filltration on Sephadex G-100. They were designated as ${\beta}-1$, 4-mannanase A,B and C, respectively, in the order of isolation. 2) These enzymes were different in several aspects such as pH optimum, effect of metal ions, adsorbability on cellulose derivatives, molecular weight, Michaelis constant toward reduced ivory nut mannan A, mode of action and extent of hydrolysis of the mannan. 3) ${\beta}-1$, 4-Mannanases A and C were proposed to be two different endo-enzymes of random-splitting type producing a series of oligosaccharides from ${\beta}-1$, 4-mannans. ${\beta}-1$, 4-Mannanase B was suggested to be possibly an exe-type enzyme catalyzing a stepwise splitting from the non-reducing end of ${\beta}-1$, 4-mannans to produce mannose. 4) Guaran was subjected to hydrolysis by the purified enzymes and the consequence was discussed in connection with structural requirements of the enzymes toward substituted ${\beta}-1$, 4-mannans and their role in germinating guar seeds.

  • PDF

Food Component Characteristics of Tang from Conger Eel By-products (붕장어 부산물로 제조한 붕장어탕의 식품학적 특성)

  • Heu, Min-Soo;Lee, Take-Sang;Kim, Hye-Suk;Jee, Seung-Joon;Lee, Jae-Hyoung;Kim, Hyung-Jun;Yoon, Min-Seok;Park, Shin-Ho;Kim, Jin-Soo
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.37 no.4
    • /
    • pp.477-484
    • /
    • 2008
  • For the effective use of the conger eel by-products, such as head and frame, Tang, which is the Korean-type soup, from conger eel by-products (TCEB) was developed and its food component characterization was compared with that of commercial Chueotang, loach Tang. According to the results of viable cells and coliform group of TCEB heated at $115^{\circ}C$ for various times, the reasonable $F_0$ value was 8 min. The proximate composition of TCEB was 90.7% for the moisture, 4.8% for the protein, 2.6% for the lipid, and 1.5% for the ash. The extractive-nitrogen content of TCEB was 243.1 mg/100 g, which was higher than that of commercial Chueotang, 208.0 mg/100 g. The total amino acid content of TCEB was 4,310 mg/100 g and its major amino acids were glutamic acid (637.3 mg/100 g, 14.8%), glycine (409.1 mg/100 g, 9.5%) and alanine (404.4 mg/100 g, 9.3%). TCEB was not felt in the sensual fish odor and its sensual taste was good. The health functional properties for health of TCEB were 1.29 as a PF (protection factor) for antioxidative activity and 39.4% for angiotensin Ⅰ converting enzyme (ACE) inhibiting activity.

Physiological Effects of Casein-derived Bioactive Peptides (카제인 유래 생리활성 Peptide의 체내 효과)

  • Jung, Ho-Jung;Min, Bock-Ki;Kwak, Hae-Soo
    • Food Science of Animal Resources
    • /
    • v.29 no.6
    • /
    • pp.659-667
    • /
    • 2009
  • Casein is considered to be the main source of protein in milk; therefore, many studies have been conducted to identify casein-derived bioactive peptides and their physiological effects. Casein is inactive within the parent protein but can be liberated by various proteases and enzymatic hydrolysis during microbial fermentation and gastrointestinal digestion. Once absorbed, casein exhibits different bioavailabilities in the body. Specifically, casein-derived peptides function as angiotensin converting enzyme (ACE) inhibitor in the cardiovascular system; thus, they are expected to reduce and prevent hypertension. Additionally, casein-derived peptides behave as opioid-like peptides in the nervous system, which impacts relaxation. These peptides are also expected to modulate various aspects of immune functions. Finally, caseinophosphopeptide (CPP) and glycomacropeptide (GMP) may exhibit a number of nutritional effects such as the absorption of calcium, iron or zinc. Many studies have been conducted to evaluate casein-derived peptides due to their multifunctional properties and the results of these studies have contributed to the development of a wide variety of functional dairy products. The purpose of this paper was to review the generation of bioactive peptides, their absorption and metabolism, and their specific bioactive effects.

Isolation of a Pseudoalteromonas sp. JH-1 Producing Agarase and Characterization of its Agarase (Agarase를 생산하는 Pseudoalteromonas sp. JH-1의 분리·동정 및 agarase의 특성 연구)

  • Lee, Dong-Geun;Kim, Ju-Hui;Lee, Sang-Hyeon
    • Journal of Life Science
    • /
    • v.31 no.5
    • /
    • pp.496-501
    • /
    • 2021
  • In this study, the marine agar-degrading bacterium Pseudoalteromonas sp. JH-1 was isolated, and its growth and agarase properties were investigated. Seawater was collected from the offshore of the Yonggung Temple in Busan, and agar-degrading bacteria were isolated and cultured with marine agar medium. The bacterium Pseudoalteromonas sp. JH-1 was isolated through 16S rRNA gene sequencing. The extracellularly secreted enzyme was obtained from the culture broth of Pseudoalteromonas sp. JH-1 and was used to characterize its agarase. The extracellular agarase exhibited a maximum activity of 116.6 U/l at 50℃ and pH 6.0 of 20 mM Tris-HCl buffer. Relative activities were 31, 59, 94, 100, 45, and 31% at 20, 30, 40, 50, 60, and 70℃, respectively. Relative activities were 49, 85, 100, 86, 81, and 67% at pH 4, 5, 6, 7, 8, and 9, respectively. Residual activity was more than 85% after exposure at 20, 30, and 40℃ for 2 hr, and more than 82% after exposure at 50℃ for 2 hr. Zymogram analysis confirmed that Pseudoalteromonas sp. JH-1 produced at least two agarases of 55 and 97 kDa. As the products of α-agarase and β-agarase have antioxidation, antitumor, skin-whitening, macrophage activation, and prebiotic effects, further studies are needed on the agarase of Pseudoalteromonas sp. JH-1.

Glycosyltransformation of ginsenoside Rh2 into two novel ginsenosides using recombinant glycosyltransferase from Lactobacillus rhamnosus and its in vitro applications

  • Wang, Dan-Dan;Kim, Yeon-Ju;Baek, Nam In;Mathiyalagan, Ramya;Wang, Chao;Jin, Yan;Xu, Xing Yue;Yang, Deok-Chun
    • Journal of Ginseng Research
    • /
    • v.45 no.1
    • /
    • pp.48-57
    • /
    • 2021
  • Background: Ginsenoside Rh2 is well known for many pharmacological activities, such as anticancer, antidiabetes, antiinflammatory, and antiobesity properties. Glycosyltransferases (GTs) are ubiquitous enzymes present in nature and are widely used for the synthesis of oligosaccharides, polysaccharides, glycoconjugates, and novel derivatives. We aimed to synthesize new ginsenosides from Rh2 using the recombinant GT enzyme and investigate its cytotoxicity with diverse cell lines. Methods: We have used a GT gene with 1,224-bp gene sequence cloned from Lactobacillus rhamnosus (LRGT) and then expressed in Escherichia coli BL21 (DE3). The recombinant GT protein was purified and demonstrated to transform Rh2 into two novel ginsenosides, and they were characterized by nuclear magnetic resonance (NMR) techniques and evaluated by 3-(4, 5-dimethylthiazol-2-yl)-2-5-diphenyltetrazolium bromide assay. Results: Two novel ginsenosides with an additional glucopyranosyl (6→1) and two additional glucopyranosyl (6→1) linked with the C-3 position of the substrate Rh2 were synthesized, respectively. Cell viability assay in the lung cancer (A549) cell line showed that glucosyl ginsenoside Rh2 inhibited cell viability more potently than ginsenoside Rg3 and Rh2 at a concentration of 10 μM. Furthermore, glucosyl ginsenoside Rh2 did not exhibit any cytotoxic effect in murine macrophage cells (RAW264.7), mouse embryo fibroblasts cells (3T3-L1), and skin cells (B16BL6) at a concentration of 10 μM compared with ginsenoside Rh2 and Rg3. Conclusion: This is the first report on the synthesis of two novel ginsenosides, namely, glucosyl ginsenoside Rh2 and diglucosyl ginsenoside Rh2 from Rh2 by using recombinant GT isolated from L. rhamnosus. Moreover, diglucosyl ginsenoside Rh2 might be a new candidate for treatment of inflammation, obesity, and skin whiting, and especially for anticancer.

Enzyme-Free Glucose Sensing with Polyaniline-Decorated Flexible CNT Fiber Electrode (Polyaniline을 이용한 CNT fiber 유연 전극 기반의 비효소적 글루코스 검출)

  • Song, Min-Jung
    • Korean Chemical Engineering Research
    • /
    • v.60 no.1
    • /
    • pp.1-6
    • /
    • 2022
  • As the demand for wearable devices increases, many studies have been studied on the development of flexible electrode materials recently. In particular, the development of high-performance flexible electrode materials is very important for wearable sensors for healthcare because it is necessary to continuously monitor and accurately detect body information such as body temperature, heart rate, blood glucose, and oxygen concentration in real time. In this study, we fabricated the nonenzymatic glucose sensor based on polyaniline/carbon nanotube fiber (PANI/CNT fiber) electrode. PANI layer was synthesized on the flexible CNT fiber electrode through electrochemical polymerization process in order to improve the performance of a flexible CNT fiber based electrode material. Surface morphology of the PANI/CNT fiber electrode was observed by scanning electron microscopy. And its electrochemical characteristics were investigated by chronoamperometry, cyclic voltammetry, electrochemical impedance spectroscopy. Compared to bare CNT fiber electrode, this PANI/CNT fiber electrode exhibited small electron transfer resistance, low peak separation potential and large surface area, resulting in enhanced sensing properties for glucose such as wide linear range (0.024~0.39 and 1.56~50 mM), high sensitivity (52.91 and 2.24 ㎂/mM·cm2), low detection limit (2 μM) and good selectivity. Therefore, it is expected that it will be possible to develop high performance CNT fiber based flexible electrode materials using various nanomaterials.

Identification of a conservative site in the African swine fever virus p54 protein and its preliminary application in a serological assay

  • Xu, Lingyu;Cao, Chenfu;Yang, Zhiyi;Jia, Weixin
    • Journal of Veterinary Science
    • /
    • v.23 no.4
    • /
    • pp.55.1-55.12
    • /
    • 2022
  • Background: ASF was first reported in Kenya in 1910 in 1921. In China, ASF spread to 31 provinces including Henan and Jiangsu within six months after it was first reported on August 3, 2018. The epidemic almost affected the whole China, causing direct economic losses of tens of billions of yuan. Cause great loss to our pig industry. As ELISA is cheap and easy to operate, OIE regards it as the preferred serological method for ASF detection. P54 protein has good antigenicity and is an ideal antigen for detection. Objective: To identify a conservative site in the African swine fever virus (ASFV) p54 protein and perform a Cloth-enzyme-linked immunosorbent assay (ELISA) for detecting the ASFV antibody in order to reduce risks posed by using the live virus in diagnostic assays. Method: We used bioinformatics methods to predict the antigen epitope of the ASFV p54 protein in combination with the antigenic index and artificially synthesized the predicted antigen epitope peptides. Using ASFV-positive serum and specific monoclonal antibodies (mAbs), we performed indirect ELISA and blocking ELISA to verify the immunological properties of the predicted epitope polypeptide. Results: The results of our prediction revealed that the possible antigen epitope regions were A23-29, A36-45, A72-94, A114-120, A124-130, and A137-150. The indirect ELISA showed that the peptides A23-29, A36-45, A72-94, A114-120, and A137-150 have good antigenicity. Moreover, the A36-45 polypeptide can react specifically with the mAb secreted by hybridoma cells, and its binding site contains a minimum number of essential amino acids in the sequence 37DIQFINPY44. Conclusions: Our study confirmed a conservative antigenic site in the ASFV p54 protein and its amino acid sequence. A competitive ELISA method for detecting ASFV antibodies was established based on recombinant p54 and matching mAb. Moreover, testing the protein sequence alignment verified that the method can theoretically detect antibodies produced by pigs affected by nearly all ASFVs worldwide.

Whitening and inhibiting NF-κB-mediated inflammation properties of the biotransformed green ginseng berry of new cultivar K1, ginsenoside Rg2 enriched, on B16 and LPS-stimulated RAW 264.7 cells

  • Xu, Xing Yue;Yi, Eun Seob;Kang, Chang Ho;Liu, Ying;Lee, Yeong-Geun;Choi, Han Sol;Jang, Hyun Bin;Huo, Yue;Baek, Nam-In;Yang, Deok Chun;Kim, Yeon-Ju
    • Journal of Ginseng Research
    • /
    • v.45 no.6
    • /
    • pp.631-641
    • /
    • 2021
  • Background: Main bioactive constituents and pharmacological functions of ripened red ginseng berry (Panax ginseng Meyer) have been frequently reported. Yet, the research gap targeting the beneficial activities of transformed green ginseng berries has not reported elsewhere. Methods: Ginsenosides of new green berry cultivar K-1 (GK-1) were identified by HPLC-QTOF/MS. Ginsenosides bioconversion in GK-1 by bgp1 enzyme was confirmed with HPLC and TLC. Then, mechanisms of GK-1 and β-glucosidase (bgp1) biotransformed GK-1 (BGK-1) were determined by Quantitative Reverse Transcription-Polymerase Chain Reaction and Western blot. Results: GK-1 possesses highest ginsenosides especially ginsenoside-Re amongst seven ginseng cultivars including (Chunpoong, Huangsuk, Kumpoong, K-1, Honkaejong, Gopoong, and Yunpoong). Ginseng root's biomass is not affected with the harvest of GK-1 at 3 weeks after flowering period. Then, Re is bioconverted into a promising pharmaceutical effect of Rg2 via bgp1. According to the results of cell assays, BGK-1 shows decrease of tyrosinase and melanin content in α-melanocyte-stimulating hormone challenged-murine melanoma B16 cells. BGK-1 which is comparatively more effective than GK-1 extract shows significant suppression of the nuclear factor (NF)-κB activation and inflammatory target genes, in LPS-stimulated RAW 264.7 cells. Conclusion: These results reported effective whitening and anti-inflammatory of BGK-1 as compared to GK-1.