• Title/Summary/Keyword: Enzyme catalysis

Search Result 92, Processing Time 0.032 seconds

Understanding Enzyme Structure and Function in Terms of the Shifting Specificity Model

  • Britt, Billy Mark
    • BMB Reports
    • /
    • v.37 no.4
    • /
    • pp.394-401
    • /
    • 2004
  • The purpose of this paper is to suggest that the prominence of Haldane's explanation for enzyme catalysis significantly hinders investigations in understanding enzyme structure and function. This occurs despite the existence of much evidence that the Haldane model cannot embrace. Some of the evidence, in fact, disproves the model. A brief history of the explanation of enzyme catalysis is presented. The currently accepted view of enzyme catalysis -- the Haldane model -- is examined in terms of its strengths and weaknesses. An alternate model for general enzyme catalysis (the Shifting Specificity model) is reintroduced and an assessment of why it may be superior to the Haldane model is presented. Finally, it is proposed that a re-examination of many current aspects in enzyme structure and function (specifically, protein folding, x-ray and NMR structure analyses, enzyme stability curves, enzyme mimics, catalytic antibodies, and the loose packing of enzyme folded forms) in terms of the new model may offer crucial insights.

Dynamic Kinetic Resolutions and Asymmetric Transformations by Enzyme-Metal Combo Catalysis

  • Kim, Mahn-Joo;Ahn, Yang-Soo;Park, Jai-Wook
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.4
    • /
    • pp.515-522
    • /
    • 2005
  • Enzyme-metal combo catalysis is described as a useful methodology for the synthesis of optically active compounds. The key point of the method is the use of enzyme and metal in combination as the catalysts for the complete transformation of racemic substrates to single enantiomeric products through dynamic kinetic resolution (DKR). In this approach, enzyme acts as an enantioselective resolving catalyst and metal does as a racemizing catalyst for the efficient DKR. Three kinds of enzyme-metal combinations - lipase-ruthenium, subtilisin-ruthenium, and lipase-palladium –have been developed as the catalysts for the DKRs of racemic alcohols, esters, and amines. The scope of the combination catalysts can be extended to the asymmetric transformations of ketones, enol acetates, and ketoximes via the DKRs. In most cases studied, enzyme-metal combo catalysis provided enantiomerically-enriched products in high yields.

Substrate Ground State Binding Energy Concentration Is Realized as Transition State Stabilization in Physiological Enzyme Catalysis

  • Britt, Billy Mark
    • BMB Reports
    • /
    • v.37 no.5
    • /
    • pp.533-537
    • /
    • 2004
  • Previously published kinetic data on the interactions of seventeen different enzymes with their physiological substrates are re-examined in order to understand the connection between ground state binding energy and transition state stabilization of the enzyme-catalyzed reactions. When the substrate ground state binding energies are normalized by the substrate molar volumes, binding of the substrate to the enzyme active site may be thought of as an energy concentration interaction; that is, binding of the substrate ground state brings in a certain concentration of energy. When kinetic data of the enzyme/substrate interactions are analyzed from this point of view, the following relationships are discovered: 1) smaller substrates possess more binding energy concentrations than do larger substrates with the effect dropping off exponentially, 2) larger enzymes (relative to substrate size) bind both the ground and transition states more tightly than smaller enzymes, and 3) high substrate ground state binding energy concentration is associated with greater reaction transition state stabilization. It is proposed that these observations are inconsistent with the conventional (Haldane) view of enzyme catalysis and are better reconciled with the shifting specificity model for enzyme catalysis.

Synthesis and Photoaffinity Labeling of 3'(2')-O-(p-azidobenzoyl) ATP

  • Shin, Seung-Jin;Lee, Woo-Kyoung;Park, Jong-Sang
    • BMB Reports
    • /
    • v.30 no.3
    • /
    • pp.211-215
    • /
    • 1997
  • A photoactive analog of ATP, 3'(2')-O-(p-azidobenzoyl)-adenosine 5-triphosphate (AB-ATP) was synthesized by chemically coupling N-hydroxysuccinimidyl-4-azidobenzoate (NHS-AB) and ATP. The utility of AB-ATP as an effective active-site-directed photoprobe was demonstrated using catalytic subunit of protein kinase A as a model enzyme. Photoincorporation of AB-ATP was saturated with apparent dissociation constant of $30{\mu}m$ and protected completely by $100{\mu}m$ of ATP. When the enzyme was covalently modified by photolysis in the presence of saturating amounts of photoprobe, about 60% inhibition of enzyme activity was observed. These results demonstrate that AB-ATP has potential application as a probe to characterize ATP-binding proteins including protein kinases.

  • PDF

Kinetics of Reversible Consecutive Reactions

  • Park, Tae Jun
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.1
    • /
    • pp.243-245
    • /
    • 2013
  • Rate equations are exactly solved for the reversible consecutive reaction of the first-order and the time-dependence of concentrations is analytically determined for species in the reaction. With the assumption of pseudo first-order reaction, the calculation applies and determines the concentration of product accurately and explicitly as a function of time in the unimolecular decomposition of Lindemann and in the enzyme catalysis of Michaelis-Menten whose rate laws have been approximated in terms of reactant concentrations by the steady-state approximation.

The N-Terminal α-Helix Domain of Pseudomonas aeruginosa Lipoxygenase Is Required for Its Soluble Expression in Escherichia coli but Not for Catalysis

  • Lu, Xinyao;Wang, Guangsheng;Feng, Yue;Liu, Song;Zhou, Xiaoman;Du, Guocheng;Chen, Jian
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.10
    • /
    • pp.1701-1707
    • /
    • 2016
  • Lipoxygenase (LOX) is an industrial enzyme with wide applications in food and pharmaceutical industries. The available structure information indicates that eukaryotic LOXs consist of N terminus β-barrel and C terminus catalytic domains. However, the latest crystal structure of Pseudomonas aeruginosa LOX shows it is significantly different from those of eukaryotic LOXs, including the N-terminal helix domain. In this paper, the functions of this N-terminal helix domain in the soluble expression and catalysis of P. aeruginosa LOX were analyzed. Genetic truncation of this helix domain resulted in an insoluble P. aeruginosa LOX mutant. The active C-terminal domain was obtained by dispase digestion of the P. aeruginosa LOX derivative containing the genetically introduced dispase recognition sites. This functional C-terminal domain showed raised substrate affinity but reduced catalytic activity and thermostability. Crystal structure analyses demonstrate that the broken polar contacts connecting the two domains and the exposed hydrophobic substrate binding pocket may contribute to the insoluble expression of the C terminus domain and the changes in the enzyme properties. Our data suggest that the N terminus domain of P. aeruginosa LOX is required for its soluble expression in E. coli, which is different from that of the eukaryotic LOXs. Besides this, this N-terminal domain is not necessary for catalysis but shows positive effects on the enzyme properties. The results presented here provide new and valuable information on the functions of the N terminus helix domain of P. aeruginosa LOX and further improvement of its enzyme properties by molecular modification.

Purification and Characterization of Protein Phosphatase 2C from Rat Liver

  • Oh, Joung-Sook;Hwang, In-Seong;Choi, Myung-Un
    • BMB Reports
    • /
    • v.30 no.3
    • /
    • pp.222-228
    • /
    • 1997
  • Protein phosphatase 2C (PP2C) is one of the four major serine/threonine phosphatases which is dependent on $Mg^{2+}$ for its activity. PP2C was purified from rat liver cytosol and its characteristics were investigated. The substrate employed for routine assay was $[^{32}P]casein$ phosphorylated by PKA. The purification process involved DEAE chromatography, ammonium sulfate fractionation, phenyl sepharose chromatography, sephacryl 5-200 gel filtration, and histone agarose chromatography. The SDS-PAGE of PP2C showed one major single protein band at a position corresponding to a molecular mass of 43 kd and the purification fold was 637. The enzyme showed a pH optimum of 8 and $K_M$ value was $1.9\;{\mu}M$. However, when the substrate was changed to $[^{32}P]histone$, the pH optimum was shifted to 7 and $K_M$ value was $2.3\;{\mu}M.\;Mg^{2+}$ was essential to the enzyme activity and okadaic acid did not exert any inhibitory effect on the enzyme. To examine residue in the active site of PP2C effects of some protein-modifying reagents were tested.

  • PDF

Mutational Analysis of Two Conserved Active Site Tyrosine Residues in Matrilysin

  • Jaeho Cha
    • Journal of Life Science
    • /
    • v.9 no.2
    • /
    • pp.44-48
    • /
    • 1999
  • The ionization of tyrosine residue is known to be involved in the stabilization of transition-state in catalysis of astacin based upon the astacin-transition state analog structure. Two tyrosine residues, Tyr-216 and Tyr-219, are conserved in all MMPs related with astacin family, We replaced Tyr-216 and Tyr-219 into phenylalanine, respectively and the zinc binding properties, kinetic parameters, and pH dependence of each mutant are determined in order to examine the role of tyrosine residue in matrilysin catalysis. Both mutants contain two zinc atoms per mol of enzyme, indicating that either tyrosime does not affect the zinc binding property of the enzyme. Y216F and Y219F mutants are highly active and the kcat/Km values are only decreased 1.1-1.5-fold compared to the wild-type enzyme. The decrease in the activity of the mutants is essentially due to the increase in Km value. The pH dependencies of the kcat/Km values for both mutants are similar to the corresponding dependencies obtained with the wild type enzyme. The pKa values at the alkaline side of both mutants are not changed. These kinetic and pH dependence results indicate that the ionization of active site tyrosine residue of matrilysin is not reflected in the kinetics of peptide hydrolysin as catalyzed by astacin.

Polymer materials for enzyme immobilization and their application in bioreactors

  • Fang, Yan;Huang, Xiao-Jun;Chen, Peng-Cheng;Xu, Zhi-Kang
    • BMB Reports
    • /
    • v.44 no.2
    • /
    • pp.87-95
    • /
    • 2011
  • Enzymatic catalysis has been pursued extensively in a wide range of important chemical processes for their unparalleled selectivity and mild reaction conditions. However, enzymes are usually costly and easy to inactivate in their free forms. Immobilization is the key to optimizing the in-service performance of an enzyme in industrial processes, particularly in the field of non-aqueous phase catalysis. Since the immobilization process for enzymes will inevitably result in some loss of activity, improving the activity retention of the immobilized enzyme is critical. To some extent, the performance of an immobilized enzyme is mainly governed by the supports used for immobilization, thus it is important to fully understand the properties of supporting materials and immobilization processes. In recent years, there has been growing concern in using polymeric materials as supports for their good mechanical and easily adjustable properties. Furthermore, a great many work has been done in order to improve the activity retention and stabilities of immobilized enzymes. Some introduce a spacer arm onto the support surface to improve the enzyme mobility. The support surface is also modified towards biocompatibility to reduce non-biospecific interactions between the enzyme and support. Besides, natural materials can be used directly as supporting materials owning to their inert and biocompatible properties. This review is focused on recent advances in using polymeric materials as hosts for lipase immobilization by two different methods, surface attachment and encapsulation. Polymeric materials of different forms, such as particles, membranes and nanofibers, are discussed in detail. The prospective applications of immobilized enzymes, especially the enzyme-immobilized membrane bioreactors (EMBR) are also discussed.