• Title/Summary/Keyword: Enzyme Kinetics

Search Result 224, Processing Time 0.024 seconds

Identification of Catalytic Amino Acid Residues by Chemical Modification in Dextranase

  • Ko, Jin-A;Nam, Seung-Hee;Kim, Doman;Lee, Jun-Ho;Kim, Young-Min
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.5
    • /
    • pp.837-845
    • /
    • 2016
  • A novel endodextranase isolated from Paenibacillus sp. was found to produce isomaltotetraose and small amounts of cycloisomaltooligosaccharides with a degree of polymerization of 7-14 from dextran. To determine the active site, the enzyme was modified with 1-ethyl-3-[3-(dimethylamino)-propyl]-carbodiimide (EDC) and α-epoxyalkyl α-glucosides (EAGs), an affinity labeling reagent. The inactivation followed pseudo first-order kinetics. Kinetic analysis and chemical modification using EDC and EAGs indicated that carboxyl groups are essential for the enzymatic activity. Three Asp and one Glu residues were identified as candidate catalytic amino acids, since these residues are completely conserved across the GH family of 66 enzymes. Replacement of Asp189, Asp340, or Glu412 completely abolished the enzyme activity, indicating that these residues are essential for catalytic activity.

Enzymatic properties of the N- and C-terminal halves of human hexokinase II

  • Ahn, Keun-Jae;Kim, Jong-Sun;Yun, Mi-Jin;Park, Jeon-Han;Lee, Jong-Doo
    • BMB Reports
    • /
    • v.42 no.6
    • /
    • pp.350-355
    • /
    • 2009
  • Although previous studies on hexokinase (HK) II indicate both the N- and C-terminal halves are catalytically active, we show in this study the N-terminal half is significantly more catalytic than the C-terminal half in addition to having a significantly higher $K_m$ for ATP and Glu. Furthermore, truncated forms of intact HK II lacking its first N-terminal 18 amino acids ($\Delta$18) and a truncated N-terminal half lacking its first 18 amino acids ($\Delta$18N) have higher catalytic activity than other mutants tested. Similar results were obtained by PET-scan analysis using $^{18}F-FDG$. Our results collectively suggest that each domain of HK II possesses enzyme activity, unlike HK I, with the N-terminal half showing higher enzyme activity than the C-terminal half.

Dibucaine Inhibition of Serum Cholinesterase

  • Elamin, Babiker
    • BMB Reports
    • /
    • v.36 no.2
    • /
    • pp.149-153
    • /
    • 2003
  • The dibucaine number (DN) was determined for serum cholinesterase (EC 3.1.1.8, SChE) in plasma samples. The ones with a DN of 79-82 were used, because they had the "usual" SChE variant. The enzyme was assayed colorimetrically by the reaction of 5,5'-dithiobis-[2-nitrobenzoic acid] (DTNB) with the free sulfhydryl groups of thiocholine that were produced by the enzyme reaction with butrylthiocholine (BuTch) or acetylthiocholine (AcTch) substrates, and measured at 412 nm. Dibucaine, a quaternary ammonium compound, inhibited SChE to a minimum within 2 min in a reversible manner. The inhibition was very potent. It had an $IC_{50}$ of $5.3\;{\mu}M$ with BuTch or $3.8\;{\mu}M$ with AcTch. The inhibition was competitive with respect to BuTch with a $K_i$ of $1.3\;{\mu}M$ and a linear-mixed type (competitive/noncompetitive) with respect to AcTch with inhibition constants, $K_i$ and $K_I$ of 0.66 and $2.5\;{\mu}M$, respectively. Dibucaine possesses a butoxy side chain that is similar to the butryl group of BuTch and longer by an ethylene group from AcTch. This may account for the difference in inhibition behavior. It may also suggest the existence of an additional binding site, other than the anionic binding site, and of a hydrophobic nature.

Inactivation of human pleural fluid phospholipase $A_2$ by dioscin

  • Beak, Suk-Hwan;Kim, Sung-Hwan;Son, Kun-Ho;Chung, Kyu-Charn;Chang, Hyeun-Wook
    • Archives of Pharmacal Research
    • /
    • v.17 no.4
    • /
    • pp.218-222
    • /
    • 1994
  • The natural product, spirostanol glycoside dioscin, was shown to directly inactivate human pleural fluid phospholipase $A_2{\;}(PLA_2)$ Inactivation was dose, and time dependent. The $IC_{50}$ was estimated at 18 .mu.M and virtually complete inactivation of the enzyme occurred at 50 .mu.M. Using Michaelis-Menten kinetics, dioscin inactivated the enzyme by a competitive inhibitory manner, the apparent Ki value was $6.9{\times}10_{-4}$. Reversibility was studied directly by dialysis method, the inhibition was reversible. Additioin of excess $Ca^{2+}$ concentration up to 8 mM did not antagonize the inhibitory activity of dioscin. Inactivation of several kinds of $PLA_2$ by dioscin is due to interaction with the active site of $PLA_2$ and may be a useful adjunt in the theraphy of inflammatory diseases.

  • PDF

Serum Levels of Xanthine Oxidase Activities in Cyclohexanone-Treated Rats Pretreated with Carbon Tetrachloride

  • Yoon, Chong-Guk
    • Biomedical Science Letters
    • /
    • v.8 no.1
    • /
    • pp.47-52
    • /
    • 2002
  • To investigate an effect of cyclohexanone (CHO) treatment on the serum levels of xanthine oxidase (XO) in liver damaged animals, the rats were intraperitoneally pretreated with 50% carbon tetrachloride ($CCl_4$) in olive oil (0.1 mL/ 100 g body weight) 14 times every other day. To the $CCl_4$-pretreated rats, CHO (1.56 g/kg body weight) was injected once and then the animals were sacrificed at 4 hours after CHO treatment. The increasing rate of serum and liver XO activities to the control was higher in CHO-treated animals pretreated with $CCl_4$ than the $CCl_4$-pretreated those. Concomitantly CHO injection to the $CCl_4$-pretreated animals showed somewhat higher Vmax and lower Km value in the kinetics of liver XO enzyme. Furthermore, increasing rate of hepatic malonedialdehyde content to the control was also higher in CHO-treated animals pretreated with $CCl_4$ than $CCl_4$-pretreated those. On the other hand, the injection of CHO to the $CCl_4$-pretreated animals showed the more enhanced liver damage on the basis of liver function finding; liver weight per body weight (%), serum levels of alanine aminotransferase activity and hepatic glucose-6-phosphatase activity. In conclusion, injection of CHO to the $CCl_4$-pretreated rats led to more increased activity of serum XO and it may be caused by acceleration of hepatocyte membrane permeability and induction of enzyme protein.

  • PDF

Characterization of a novel methionine sulfoxide reductase A from tomato (Solanum lycopersicum), and its protecting role in Escherichia coli

  • Dai, Changbo;Singh, Naresh Kumar;Park, Myung-Ho
    • BMB Reports
    • /
    • v.44 no.12
    • /
    • pp.805-810
    • /
    • 2011
  • Methionine sulfoxide reductase A (MSRA) is a ubiquitous enzyme that has been demonstrated to reduce the S enantiomer of methionine sulfoxide (MetSO) to methionine (Met) and can protect cells against oxidative damage. In this study, we isolated a novel MSRA (SlMSRA2) from Micro-Tom (Solanum lycopersicum L. cv. Micro-Tom) and characterized it by subcloning the coding sequence into a pET expression system. Purified recombinant protein was assayed by HPLC after expression and refolding. This analysis revealed the absolute specificity for methionine-S-sulfoxide and the enzyme was able to convert both free and protein-bound MetSO to Met in the presence of DTT. In addition, the optimal pH, appropriate temperature, and $K_m$ and $K_{cat}$ values for MSRA2 were observed as 8.5, $25^{\circ}C$, $352{\pm}25\;{\mu}M$, and $0.066{\pm}0.009\;S^{-1}$, respectively. Disk inhibition and growth rate assays indicated that SlMSRA2 may play an essential function in protecting E. coli against oxidative damage.

Optimization of Medium Composition and Cultivation Parameters for Fructosyltransferase Production by Penicillium aurantiogriseum AUMC 5605

  • Farid, Mohamed Abdel-Fattah Mohamed;Kamel, Zinat;Elsayed, Elsayed Ahmed;El-Deen, Azza Mohamed Noor
    • Journal of Applied Biological Chemistry
    • /
    • v.58 no.3
    • /
    • pp.209-218
    • /
    • 2015
  • Fructooligosaccharides have been mainly produced by microbial fructosyltransferases (FTase) enzymes. The present work focuses on the optimization of medium composition and cultivation parameters affecting FTase produced by Penicillium aurantiogriseum AUMC 5605 in shake flask cultivation. FTase production was optimized in two steps using DeMeo's fractional factorial design. A 1.46-fold increase in FTase production (105.4 U/mL) was achieved using the optimized culture medium consisting of (g/L): sucrose, 600; yeast extract, 10; $K_2HPO_4$, 5; $MgSO_4{\cdot}7H_2O$, 0.5; $(NH_4)_2SO_4$, 1.0 and KCl, 0.5. The obtained results showed that the maximum FTase enzyme activity was produced at initial cultivation pH values ranging from 6.0-6.5, at agitation speed of 200 rpm and using vegetative fungal cells as inoculum. Moreover, results showed that optimization of medium composition and some cultivation parameters resulted in an increase of about 93.7% in the enzyme activity than the nonoptimized cultivation conditions after 96 h of cultivation. Additionally, maximum production and specific production rates recorded 2340 U/L/h and 102 U/L/h/g cells, respectively.

The Enzymatic Properties of Actinidine from Kiwifruit

  • Nam, Seung-Hee;Walsh, Marie K.;Yang, Kwang-Yeol
    • Food Science and Biotechnology
    • /
    • v.15 no.3
    • /
    • pp.453-457
    • /
    • 2006
  • Activity and stability of kiwifruit actinidine was determined in various conditions of pH, salt, and temperature using N-${\alpha}$-CBZ-lysine P-nitrophenyl ester as the substrate. Actinidine activity was low below pH 6, and undetectable below pH 3. The enzyme was stable in a pH range of 6.0-8.5. At $4^{\circ}C$ the enzyme was inactive in the presence of greater than 36% vinegar and in 2 M NaCl. Actinidine at $25^{\circ}C$ was unstable in 24% vinegar but stable in up to 3 M NaCl. With regard to freeze-thaw stability, actinidine retained 85% residual activity after being frozen at $-20^{\circ}C$ for 3 days. Based on Arrenius and Lineweaver-Burk plots, actinidine became unstable at greater than $45^{\circ}C$ with only 30% residual activity remaining after 6 min. The Km, kcat, and kcat/Km values of actinidine were $56\;{\mu}M$, 67/sec, and $1.2\;{\mu}M/sec$, respectively.

Aloesin and Arbutin Inhibit Typrosinase Activity in a Synergistic Manner via a Different Action Mechanism

  • Jin, Ying-Hua;Lee, Suk-Jin;Chung, Myung-Hee;Park, Jeong-Hill;Park, Young-In;Cho, Tae-Hyeong;Lee, Seung-Ki
    • Archives of Pharmacal Research
    • /
    • v.22 no.3
    • /
    • pp.232-236
    • /
    • 1999
  • In this study, we present evidence that cotreatment of aloesin and arbutin inhibits tyrosinase activity in a synergistic manner by acting through a different action mechanism. Aloesin or arbutin similarly inhibited enzyme activity of human- and mushroom-tyrosinases with an IC50 value of 0.1 or 0.04 mM, respectively. Lineweaver-Burk plots of the enzyme kinetics data showed that aloesin inhibited tyrosinase activity noncompetitively with a Ki value of 5.3 mM, whereas arbutin did it competitively (Maeda, 1996). We then examined whether cotreatment of these agents inhibits the tyrosinase activity in a synergistic manner. The results showed that 0.01 mM aloesin in the presence of 0.03 mM arbutin inhibited activity of mushroom by 80% of the control value and the reverse was also true. The inhibitory effects were calculated to be synergistic according to the B rgi method. Taken together, we suggest that aloesin along with arbutin inhibits in synergy melanin production by combined mechanisms of noncompetitive and competitive inhibitions of tyrosinase activity.

  • PDF

Characteristics and Action Pattern of Alkaline Protease from Streptomyces gviseus HC-1141 (Streptomyces griseus HC-1141이 생성하는 Alkaline Protease의 특성 및 작용양상)

  • Choi, Cheong;Chung, Yung-Gun;Sung, Sam-Kyung;Choi, Kwang-Soo;Lee, Jae-Sung;Cho, Young-Je;Chun, Sung-Sook
    • Microbiology and Biotechnology Letters
    • /
    • v.20 no.3
    • /
    • pp.295-301
    • /
    • 1992
  • An alkaline protease producing microorganism was isolated from soil and identified as Streptomyces griseus HC-1141. The optimum pH and temperature for the purified enzyme activity were 8.0 and $60^{\circ}C$, respectively. The enzyme was relatively stable in the pH range of 7.0-9.0 and at the temperature below $60^{\circ}C$. The activity of purified enzyme was inhibited by $Hg^{2+}$, $Cu^{2+}$, $Zn^{2+}$, $Ba^{2+}$ and $Fe^{2+}$, whereas activated by $Mn^{2+}$ and $Ca^{2+}$. $\varepsilon$-Amino caproic acid, 2,4-dinitrophenol and iodine did not show inhibitory effect on the activity of alkaline protease, but p-chloromercuribenzoic acid, ethylendiaminetetraacetic acid showed inhibitory effect on the enzyme activity. These result suggested that the protease was metalloenzyme, and require a reactive SH group for the activity. The reaction of this enzyme follows typical Michaelis-Menten kinetics with the $K_m$ value of $2.229{\times}10^{-4}$M and the $V_{max}$ of $46.08 {\mu}$g/min for casein. The activation energy for the alkaline protease calculated by Arrhenius equation was 3.643 kcal/mol. This enzyme hydrolyzed casein more rapidly than the hemoglobin and egg albumin.

  • PDF