Cytosine deaminase (cytosine aminohydrolase, EC 3.5.4.1) stoichiometrically catalyzes the hydrolytic deamination of cytosine and 5-fluorocytosine to uracil and 5-fluorouracil, respectively. The intracellular cytosine deaminase from Chromobacterium violaceum YK 391 was purified to apparent homogeneity with 272.9-fold purification with an overall yield of $13.8\%$. The enzyme consisted of dimeric polypeptides of 63 kDa, and the total molecular mass was calculated to be approximately 126 kDa. Besides cytosine, the enzyme deaminated 5-fluorocytosine, cytidine, 6-azacytosine, and 5-methylcytosine, but not 5-azacytosine. Optimum pH and temperature for the enzyme reaction were 7.5 and $30^{\circ}C$, respectively. The enzyme was stable at pH 6.0 to 8.0, and at 30T for a week. About $70\%$ of the enzyme activity was retained at $60^{\circ}C$ for 5 min. The apparent $K_{m}$ values for cytosine, 5-fluorocytosine, and 5-methylcytosine were calculated to be 0.38 mM, 0.87 mM, and 2.32 mM, respectively. The enzyme activity was strongly inhibited by 1 mM $Hg^{2+},\;Zn^{2+},\;Cu^{2+},\;Pb^{2+},\;and\;Fe^{3+}$, and by o-phenanthroline, $\alpha,\;{\alpha}'$-dipyridyl, p-choromercuribenzoate, N-bromosuccinimide, and cWoramineT. In addition, the enzyme activity was strongly inhibited by I mM 2-thiouracil, and weakly inhibited by 2-thiocytosine, or 5-azacytosine. Finally, intracellular and extracellular cytosine deaminases from Chromobacterium violaceum YK 391 were found to have a different optimum temperature, apparent $K_{m}$ value, and molecular mass.