• Title/Summary/Keyword: Enzyme Efficiency

Search Result 451, Processing Time 0.022 seconds

A Study on the Proteolysis of Mussel Protein by a Commercial Enzyme Preparation (단백질 분해효소에 의한 홍합 단백질의 분해에 관한 연구)

  • Choi, In-Jae;Nam, Hee-Sop;Shin, Zae-Ik;Lee, Byong-Hoon
    • Korean Journal of Food Science and Technology
    • /
    • v.24 no.6
    • /
    • pp.519-523
    • /
    • 1992
  • The patterns on the proteolysis of mussel protein using a commercial enzyme preparation were investigated. The best one among six commercial enzyme preparations for the manufacture of mussel extract was Corolase PP, based on the degree of hydrolysis (DH). When the raw mussel paste, without water addition, was adjusted to pH 6.5, added 0.1% (w/w dry basis) of Corolase PP. and reacted at $50^{\circ}C$ for four hours, it reached the maximum value of DH (79%). The precooking of raw mussel decreased the efficiency of extraction and hydrolysis of the protein, due to the inactivation of the autolytic enzymes contained in the mussel. During the course of proteolysis, major free amino acids such as glycine, alanine, glutamic acid and lysine, representing a characteristic brothy taste of mussel were replaced with free hydrophobic amino acids including valine, methionine, isoleucine, and leucine. The electrophoretic pattern and HPLC-GPC pattern of mussel protein hydrolysates during the hydrolysis were observed and also discussed.

  • PDF

Suitability of Physiological Indicators of Ozone Tolerance among 8 families of Sophora japonica (회화나무 8 가계간 오존 내성 차이에 대한 생리적 지표의 적합성)

  • Han, Sim-Hee;Kim, Du-Hyun;Lee, Jae-Cheon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.12 no.3
    • /
    • pp.173-182
    • /
    • 2010
  • This study was conducted to investigate ozone sensitivity of physiological indicators and the difference in ozone tolerance of 8 families of Sophora japonica seedlings on the basis of the standardized physiological indicators. After ozone treatment, photosynthetic parameters, photosynthetic pigments and malondialdehyde (MDA) content, and antioxidative enzyme activities were analyzed from the leaves of S. japonica seedlings. Ozone tolerance indices among 8 families were calculated with the standardized physiological parameters. In addition, the reduction of carboxylation efficiency and apparent quantum yield were observed in the leaves of seven families, except for family No. 6 and 7, respectively. The apparent quantum yield varied from -27% to -61% of the control seedlings. Photosynthetic pigment content differed significantly among 8 families, but was not affected significantly by ozone treatment. Superoxide dismutase (SOD) activity increased from 7% to 64% after ozone exposure, and significant difference existed among 8 families. Ascorbate-peroxidase (APX) activity of 8 families increased by ozone treatment, and the activity of family No. 7 showed the highest increase (218%) in comparison to their respective control plants. On the basis of the standardized indices, family No. 6 showed the lowest tolerance by indicating higher reduction of both photosynthetic parameters and pigment content and lower increase of antioxidative enzyme activities. On the contrary, family No. 7 showed the highest tolerance as indicated by lower reduction of photosynthetic parameters, higher amounts of photosynthetic pigments, and higher enzyme activity.

The Effects of Dietary Enzyme Mixture Fortified with β-Glucanase Activity on the Growth Performance, Serum Components, and Meat Quality of Broiler Chicks (사료 내 β-Glucanase 활성이 강화된 복합효소제 급여가 육계의 생산성과 혈청성분 및 육질에 미치는 영향)

  • Cho, Jin-Kook;Jung, Soo-Jin;Joo, Eun-Jeong;Choi, Jin-Young;Kim, Byoung-Suk;Youn, Byeng-Sun;Nam, Ki-Taek;Hwang, Seong-Gu
    • Food Science of Animal Resources
    • /
    • v.27 no.4
    • /
    • pp.409-415
    • /
    • 2007
  • This experiment was conducted to investigate the effects of dietary enzyme mixture fortified with ${\beta}-glucanase$ on the growth performance, serum components and meat quality of broiler chicks. 31,800 Ross 208 male broiler chicks were randomly allotted into 2 groups, the control and 0.3% enzyme diet with ${\beta}-glucanase$ supplementation groups. Control group chicks were fed the control (corn-soybean meal based) diet and the treatment group chicks were fed the 0.3% enzyme mixture supplemented with ${\beta}-glucanase$. The growth performance, serum components and meat qualities such as pH, color, water holding capacity, cooking loss, and shearing force of meats were investigated. The results showed that the growth performance of chicks fed the 0.3% enzyme mixture diet were improved compared to that of the control group, as much as 5% in growth rate, 19% in average weight, 6.8% in performance index, and 5.5% in feed efficiency. Although, there were no significant differences in the muscle color degrees ($L^*a^*b^*$) and shearing force between the control group and experimental group, the water holding capacity and cooking loss of the experimental group were significantly higher than those of control group (p<0.05). The antibody titers in serum against the antigens of Newcastle disease and Infectious Bursal disease were higher in the experimental group than in the control group. Altogether, these suggest that the broiler diet containing 0.3% enzyme mixture fortified with ${\beta}-glucanase$ activity can improve the growth performance, immune reaction, and meat quality of broiler chicks.

A Study of strength properties of Deinked pulp according to deinking agents (탈묵제에 따른 탈묵 펄프의 강도적 성질에 대한 연구)

  • 손성민;김성빈;김현성
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.18 no.1
    • /
    • pp.95-102
    • /
    • 2000
  • This paper presents the second part of a study of deinking using wort. Physical properties of deinked pulps such as tensile strength, bursting strength and tearing resistance were investigated. In order to analyze the properties, the fiber length and coarseness of deinked pulp was also measured. Results of deinking experiments showed that the deinking efficiency of enzyme treatments was higher than that of chemical treatments in strength properties such as tensile strength, bursting strength and tearing resistance on the the whole. we think that the reason why is that the fiber length and coarseness of deinked pulp with wort are more increased and decreased than those of deinked pulp with chemicals individually.

  • PDF

Effect of Oxidation-Reduction Potential on Denitrification by Ochrobactrum anthropi SY509

  • Song, Seung-Hoon;Yeom, Sung-Ho;Choi, Suk-Soon;Yoo, Young-Je
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.3
    • /
    • pp.473-476
    • /
    • 2003
  • The effect of oxidation-reduction potential (ORP) level on the denitrification by Ochrobactrum anthropi SY509 was investigated under nongrowing condition. The maximum ORP level of nitrate-containing buffer solution was -70∼-80 mV, under which the denitrification took place. By decreasing the initial ORP level, denitrifying enzyme activity was greatly enhanced, which led to higher denitrification efficiency.

Isolation and Characterization of a Novel Agarase-Producing Pseudoalteromonas spp. Bacterium from the Guts of Spiny Turban Shells

  • Oh, Young-Hoon;Jung, Chang-Kyou;Lee, Jin-Won
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.8
    • /
    • pp.818-821
    • /
    • 2011
  • An agar-degrading bacterium was isolated from the guts of spiny turban shells. It was identified as a Pseudoalteromonas species and named Pseudoalteromonas sp. JYBCL 1. The viscosity of the inoculated agar medium decreased by more than 60% after 20 h cultivation. The agarase produced by the isolate had optimal activities at $35^{\circ}C$ and pH 7. The enzyme had extremely strong resistance to ionic stress compared with other known agarases. Its molecular mass was estimated at about 60 kDa by sodium dodecyl sulfate polyacrylamide gel electrophoresis. The agarase could saccharify Gelidium amansii directly, with an efficiency about half that compared with agar saccharification.

A novel method for the synthesis of nano-magnetite particles

  • Syahmazgi, Maryam Ghodrati;Falamaki, Cavus;Lotfi, Abbas Sahebghadam
    • Advances in nano research
    • /
    • v.2 no.2
    • /
    • pp.89-98
    • /
    • 2014
  • A novel and simple method for the synthesis of nano-magnetite particles is disclosed. In the novel procedure, $Fe^{2+}$ is the only source of metal cation. Carboxymethylcellulose (CMC) is used as the structure directing agent. The phase analysis of the nano-particles was performed using XRD and electron diffraction techniques. Size and morphology analysis was performed using light scattering and TEM techniques. The effect of $NH_4OH$ solution (32 wt. %) at different CMC concentrations on the size distribution of the final magnetite powders is studied. An optimal base concentration exists for each CMC concentration leading to minimal agglomeration. There exists a minimum CMC concentration (0.0016 wt. %), lower than that no magnetite forms. It is shown that using the new method, it is possible to immobilize a lipase enzyme (Candida Rugosa) with immobilization efficiency larger than 98 % with a loading more than 3 times the reported value in the literature. The latter phenomenon is explained based on the agglomerate state of the nano-particles in the liquid phase.

Mini-proinsulins with a beta-turn motif

  • Chang, Seung-Gu;Kim, Dae-Young;Kim, Young-Sook;Park, Ki-Doo;Shin, Jae-Min;Shin, Hang-Cheol
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1995.10a
    • /
    • pp.41-48
    • /
    • 1995
  • To increase the folding efficiency of proinsulin, we have designed a series of mini-proinsulins having the central C-peptide region replaced with sequences forming reverse turns. These proteins were produced as fusion proteins in E. coli in the form of inclusion bodies. After isolation process of the sulfonated mini-proinsulins, the subsequent refolding experiments indicate that the mini-proinsulins, with non-native penta-peptide sequences inserted between two of the enzyme processing sites, show substantially increased folding yields compared with the proinsulin. The correct disulfide connections were verified by fingerprint analysis using Glu-C endoproteinase. These novel mini-proinsulins could be used for the study of folding mechanism of proinsulin.

  • PDF

Application of a Compatible Xylose Isomerase in Simultaneous Bioconversion of Glucose and Xylose to Ethanol

  • Chandrakant Priya;Bisaria Virendra S.
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.5 no.1
    • /
    • pp.32-39
    • /
    • 2000
  • Simultaneous isomerisation and fermentation (SIF) of xylose and simultaneous isomerisation and cofermentation (SICF) of glucose-xylose mixture was carried out by the yeast Saccharomyces cerevisiae in the presence of a compatible xylose isomerase. The enzyme converted xylose to xylulose and S. cerevisiae fermented xylulose, along with glucose, to ethanol at pH 5.0 and $30^{\circ}C$. This compatible xylose isomerase from Candida boidinii, having an optimum pH and temperature range of 4.5-5.0 and $30-35^{\circ}C$ respectively, was partially purified and immobilized on an inexpensive, inert and easily available support, hen egg shell. An immobilized xylose isomerase loading of 4.5 IU/(g initial xylose) was optimum for SIF of xylose as well as SICF of glucose-xylose mixture to ethanol by S. cerevisiae. The SICF of 30 g/L glucose and 70 g xylose/L gave an ethanol concentration of 22.3 g/L with yield of 0.36 g/(g sugar consumed) and xylose conversion efficiency of $42.8\%$.

  • PDF

Platinum nanocomposites and its applications: A review

  • Sharon, Madhuri;Nandgavkar, Isaac;Sharon, Maheshwar
    • Advances in materials Research
    • /
    • v.6 no.2
    • /
    • pp.129-153
    • /
    • 2017
  • Platinum is a transition metal that is very resistant to corrosion. It is used as catalyst for converting methyl alcohol to formaldehyde, as catalytic converter in cars, for hydrocracking of heavy oils, in Fuel Cell devices etc. Moreover, Platinum compounds are important ingredient for cancer chemotherapy drugs. The nano forms of Platinum due to its unique physico-chemical properties that are not found in its bulk counterpart, has been found to be of great importance in electronics, optoelectronics, enzyme immobilization etc. The stability of Platinum nanoparticles has supported its use for the development of efficient and durable proton exchange membrane Fuel Cells. The present review concentrates on the use of Platinum conjugated with various metal or compounds, to fabricate nanocomposites, to enhance the efficiency of Platinum nanoparticles. The recent advances in the synthesis methods of different Platinum-based nanocomposites and their applications in Fuel Cell, sensors, bioimaging, light emitting diode, dye sensitized solar cell, hydrogen generation and in biosystems has also been discussed.