• Title/Summary/Keyword: Enzymatically Hydrolyzed Yeast

Search Result 5, Processing Time 0.022 seconds

Combination of an Enzymatically Hydrolyzed Yeast and Yeast Culture with a Direct-fed Microbial in the Feeds of Broiler Chickens

  • Gomez, S.;Angeles, M.L.;Mojica, M.C.;Jalukar, S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.5
    • /
    • pp.665-673
    • /
    • 2012
  • A balance trial experiment was carried out to evaluate the potential relationship between an enzymatically hydrolyzed yeast (EHY) and yeast culture combined with a live Bacillus subtilis (Bs) on the productive parameters, ileal digestibility, retention of nutrient and energy and villus morphology in broilers. Seventy two 28 d old, Ross B308 male broilers were assigned to a factorial combination of 2 levels of EHY (0 and 1 kg/ton of feed) and 2 levels of Bs (0 and 125 g/ton of feed). The experiment lasted 2 weeks. Several treatment interactions were observed. EHY-fed broilers showed the lowest feed intake and feed conversion ratio whereas Bs-fed broilers showed the highest feed intake and intermediate feed conversion ratio (EHY and BS interaction, p<0.05). Also, EHY-fed broilers had greater ileal digestibility of dry matter (EHY and BS interaction, p<0.01) and energy (EHY and BS interaction, p<0.05) but these responses were counterbalanced by the combination of EHY and Bs. The thickness of the mucosa was similar between the control and EHY-fed broilers, but was lowest when Bs was added alone (EHY and BS interaction, p<0.01). The thickness of the villus was greater in EHY plus Bs-fed broilers, intermediate for the control and lower for Bs or EHY-fed broilers (EHY and BS interaction, p<0.05). The area of the villus was greater in the control and EHY plus Bs-fed broilers (EHY and BS interaction, p<0.05). In addition, EHY-fed broilers showed greater breast yield and nitrogen retention (p<0.01) and ashes digestibility (p<0.05). On the other hand, Bs-fed broilers had greater carcass and breast weight, nitrogen retention, energy excretion and villus height (p<0.05). In summary, EHY and Bs enhanced some growth, carcass and nutrient retention responses, but did not show any synergic relationship in these responses. Opposite to this, the results suggest that the positive effect of EHY on the feed conversion and digestibility of nutrients were counterbalanced by the addition of Bs.

Influence of Feeding Enzymatically Hydrolyzed Yeast Cell Wall on Growth Performance and Digestive Function of Feedlot Cattle during Periods of Elevated Ambient Temperature

  • Salinas-Chavira, J.;Arzola, C.;Gonzalez-Vizcarra, V.;Manriquez-Nunez, O.M.;Montano-Gomez, M.F.;Navarrete-Reyes, J.D.;Raymundo, C.;Zinn, R.A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.9
    • /
    • pp.1288-1295
    • /
    • 2015
  • In experiment 1, eighty crossbred steers ($239{\pm}15kg$) were used in a 229-d experiment to evaluate the effects of increasing levels of enzymatically hydrolyzed yeast (EHY) cell wall in diets on growth performance feedlot cattle during periods of elevated ambient temperature. Treatments consisted of steam-flaked corn-based diets supplemented to provide 0, 1, 2, or 3 g EHY/hd/d. There were no effects on growth performance during the initial 139-d period. However, from d 139 to harvest, when 24-h temperature humidity index averaged 80, EHY increased dry matter intake (DMI) (linear effect, p<0.01) and average daily gain (ADG) (linear effect, p = 0.01). There were no treatment effects (p>0.10) on carcass characteristics. In experiment 2, four Holstein steers ($292{\pm}5kg$) with cannulas in the rumen and proximal duodenum were used in a $4{\times}4$ Latin Square design experiment to evaluate treatments effects on characteristics of ruminal and total tract digestion in steers. There were no treatment effects (p>0.10) on ruminal pH, total volatile fatty acid, molar proportions of acetate, butyrate, or estimated methane production. Supplemental EHY decreased ruminal molar proportion of acetate (p = 0.08), increased molar proportion of propionate (p = 0.09), and decreased acetate:propionate molar ratio (p = 0.07) and estimated ruminal methane production (p = 0.09). It is concluded that supplemental EHY may enhance DMI and ADG of feedlot steers during periods of high ambient temperature. Supplemental EHY may also enhance ruminal fiber digestion and decrease ruminal acetate:propionate molar ratios in feedlot steers fed steam-flaked corn-based finishing diets.

Separation and identification of selenoproteins in selenium-enriched yeast (셀레늄이 강화된 이스트에서 셀레늄 단백질의 분리 및 확인)

  • Kim, Kyong-Mi;Pak, Yong-Nam
    • Analytical Science and Technology
    • /
    • v.26 no.6
    • /
    • pp.357-363
    • /
    • 2013
  • Selenium-containing proteins were separated from selenium-enriched yeast (SEY) using Trizol$^{(R)}$ reagent followed by anion exchange (AE) chromatography. This method is simpler and less time consuming than electrophoresis. Five selenium containing proteins were identified by on-line AE HPLC-ICP/MS (high performance liquid chromatography-inductively coupled plasma/mass spectrometry). Each protein was enzymatically hydrolyzed to seleno-amino acids and separated with RP (reverse phase) HPLC for the identification of selenoproteins.

Ethanol Fermentation of Corn Starch by a Recombinant Saccharomyces cerevisiae Having Glucoamylase and $\alpha$-Amylase Activities

  • Lee, Dae-Hee;Park, Jong-Soo;Ha, Jung-Uk;Lee, Seung-Cheol;Hwang, Yong-Il
    • Preventive Nutrition and Food Science
    • /
    • v.6 no.4
    • /
    • pp.206-210
    • /
    • 2001
  • Starch is an abundant resource in plant biomass, and it should be hydrolyzed enzymatically into fermentable sugars for ethanol fermentation. A genetic recombinant yeast, Saccharomyces cerevisiae GA-7458, was constructed by integrating the structural gene of both $\alpha$-amylase from Bacillus stearothermophilus and the gene (STA1) encoding glucoamylase from S. diastaticus into the chromosome of S. cerevisiae SH7458. The recombinant yeast showed active enzymatic activities of $\alpha$-amylase and glucoamylase. The productivity of ethanol fermentation from the pH-controlled batch culture (pH 5.5) was 2.6 times greater than that of the pH-uncontrolled batch culture. Moreover, in a fed-batch culture, more ethanol was produced (13.2 g/L), and the production yield was 0.38 with 2% of corn starch. Importantly, the integrated plasmids were fully maintained during ethanol fermentation.

  • PDF

Potential of Red Ginseng Marc for Ethanol Production as a Fermentation Medium (에탄올 발효 배지로서 홍삼박의 활용)

  • Kim, Dong Chung;In, Man-Jin
    • Journal of Applied Biological Chemistry
    • /
    • v.56 no.4
    • /
    • pp.245-247
    • /
    • 2013
  • The potential of the red ginseng marc (RGM) for the production of bio-ethanol using enzymatic hydrolysis and fermentation without any additional nutrients was investigated. Reducing sugar content in RGM treated with Viscozyme and Flavourzyme was 101.1 g/L and was much higher than that (7.2 g/L) in intact RGM. When enzymatically hydrolyzed red ginseng marc (ERGM) was fermented with commercially available dry yeast at $25^{\circ}C$ for 7 days, the final ethanol concentration reached 29.3 g/L with ethanol yield at 0.274 g of ethanol per 1 g of solubilized total sugar. Ethanol concentration and ethanol yield of ERGM were drastically increased over 1000% and 50%, respectively than those of RGM.