• Title/Summary/Keyword: Enzymatic process

Search Result 336, Processing Time 0.024 seconds

Peroxidase-mediated Formation of the Fungal Polyphenol 3,14'-Bihispidinyl

  • Lee, In-Kyoung;Yun, Bong-Sik
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.1
    • /
    • pp.107-109
    • /
    • 2008
  • Medicinal fungi, Phellinus linteus and Inonotus xeranticus, produce a cluster of yellow pigment in their fermentation broth that acts as an important element of biological activity. The pigment is composed of diverse polyphenols with a styrylpyrone moiety, mainly hispidin and its dimers, 3,14'-bihispidinyl, hypholomine B, and 1,1-distyrylpyrylethan. Although dimeric hispidins were proposed to be biosynthesized from two molecules of monomer via oxidative coupling by ligninolytic enzymes, laccase and peroxidase, the details of this process remain unknown. In this preliminary study, we attempted to achieve enzymatic synthesis of the hispidin dimer from hispidin by using commercially available horseradish peroxidase (HRP). Consequently, a hispidin dimer, 3,14'-bihispidinyl, was synthesized, whereas the other dimers, hypholomine B and 1,1-distyrylpyrylethan, were not produced. This result suggested that the oxidative coupling at the C-3 and C-14' positions of hispidins was dominant in the process of dimerization by HRP, and indicated that additional catalysts or substrates would be needed to synthesize other hispidin dimers present in the fungal metabolite.

The Effect of UV-A and Reactive Oxygen Species on Glycosylation and Fragmentation of Calf Skin Collagen

  • Wan Goo Cho;Sang Jin Kang;Seong Don Hong;Quse Chae
    • Bulletin of the Korean Chemical Society
    • /
    • v.14 no.1
    • /
    • pp.107-109
    • /
    • 1993
  • Non-enzymatic glycosylation and fragmentation of collagen molecule were investigated by irradiating Ultraviolet A(UV-A) with or without scavengers of reactive oxygen species (ROS) in the presence of glucose. Non-enzymatic glycosylation was increased by UV-A at high concentration of glucose. It was reduced in the presence of the scavengers of superoxide radical and singlet oxygen, but not reduced in the presence of hydroxy radical scavenger. Fragmentation of collagen was increased by UV-A, but it was decreased in the presence of all ROS scavengers tested. Superoxide radical and singlet oxygen produced by autoxidation of glucose without UV-A may encounter the initial phase of glycosylation. Data presented here suggest that UV-A affects only on the fragmentation process, but all ROS except hydroxy radical act on both processes. It appears that hydroxy radical does not act on the glycosylation process.

The Effect of Acid Hydrolysis and Enzymatic Saccharification in Bioethanol Production Process Using Fruit Peels (과일껍질을 이용한 바이오에탄올 생산 공정에서 산 가수분해 및 효소당화의 영향)

  • Lee, Seung Bum;Kim, Hyungjin
    • Applied Chemistry for Engineering
    • /
    • v.25 no.6
    • /
    • pp.619-623
    • /
    • 2014
  • The acid hydrolysis and enzymatic saccharification were carried out for the production of cellulosic ethanol. The possibility of bio-energy production from tangerine peel and apple and watermelon rind was evaluated by determining the optimum production condition. The optimum conditions for the production of cellulosic ethanol from fruit peel were as follows: the sulfuric acid concentration and reaction time of acid hydrolysis for the ethanol production from an apple rind were 20 wt% and 90 min, respectively. The concentration of sulfuric acid for tangerine peel and a watermelon rind at the hydrolysis time of 60 min were 15 wt% and 10 wt%, respectively. A viscozyme was proven as the best conversion for the ethanol production when using enzymatic saccharification from fruit peels. The optimum enzymatic saccharification time for tangerine peel and apple and watermelon rind were 60, 180, and 120 min, respectively.

Bioelectrochemical Detoxification of Phenolic Compounds during Enzymatic Pre-Treatment of Rice Straw

  • Kondaveeti, Sanath;Pagolu, Raviteja;Patel, Sanjay K.S.;Kumar, Ashok;Bisht, Aarti;Das, Devashish;Kalia, Vipin Chandra;Kim, In-Won;Lee, Jung-Kul
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.11
    • /
    • pp.1760-1768
    • /
    • 2019
  • The use of lignocellulosic biomass such as rice straw can help subsidize the cost of producing value-added chemicals. However, inhibitory compounds, such as phenolics, produced during the pre-treatment of biomass, hamper the saccharification process. Laccase and electrochemical stimuli are both well known to reduce phenolic compounds. Therefore, in this study, we implemented a bioelectrochemical detoxification system (BEDS), a consolidated electrochemical and enzymatic process involving laccase, to enhance the detoxification of phenolics, and thus achieve a higher saccharification efficiency. Saccharification of pretreated rice straw using BEDS at 1.5 V showed 90% phenolic reduction (Phr), thereby resulting in a maximum saccharification yield of 85%. In addition, the specific power consumption when using BEDS (2.2 W/Kg Phr) was noted to be 24% lower than by the electrochemical process alone (2.89 W/kg Phr). To the best of our knowledge, this is the first study to implement BEDS for reduction of phenolic compounds in pretreated biomass.

A Research Trend of Pretreatment in Bioethanol Production Process with Lignocellulosic Biomass: A Literature Review (목질계 바이오에탄올 생산의 전처리 기술에 관한 연구동향)

  • Kim, Yeong-Suk
    • Journal of the Korean Wood Science and Technology
    • /
    • v.37 no.3
    • /
    • pp.274-286
    • /
    • 2009
  • Lignocellulosic biomass is the most abundant raw material for bioconversion in many country. However the high costs for pretreatment and enzymatic hydrolysis currently deter commercialization of lignocellulosic biomass, especially wood biomass which is considered as the most recalcitrant material for enzymatic hydrolysis mainly due to the high lignified structure and the nature of the lignin component. Therefore, overcoming recalcitrance of lignocellulosic biomass for converting carbohydrates into intermediates that can subsequently be converted into biobased fuels and biobased products is the primary technical and economic challenge for bioconversion process. This study was mainly reviewed on the research trend of pretreatment with lignocellulosic biomass in bioethanol production process.

Environmental Impact from Enzymatic Preparatory Process of Cotton Comparison with the Conventional Process (면섬유의 기존 전처리 공정과 효소 사용 전처리 공정의 환경오염 평가)

  • Choe, Eun-Kyung;Son, Seung-Hwan;Cho, Young-Dal
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2001.10a
    • /
    • pp.375-378
    • /
    • 2001
  • At the time of facing strict environmental regulations, environmentally friendly dyeing technology is being highlighted due to the potential possibility of reducing environmental impact, so is the preparation process that uses a great deal of water and generates as much contamination. Enzyme technology has been regarded as an eco-friendly solution to industrial problems, saving water, chemicals and energy. (omitted)

  • PDF

Hydrothermal Pretreatment of Ulva pertusa Kjellman Using Microwave Irradiation for Enhanced Enzymatic Hydrolysis (구멍갈파래의 효소 가수분해 증진을 위한 마이크로파 이용 열수 전처리)

  • Kim, Jungmin;Ha, Sung Ho
    • Korean Chemical Engineering Research
    • /
    • v.53 no.5
    • /
    • pp.570-575
    • /
    • 2015
  • The green algae have cellulose as a main structural component of their cell wall and the cellulose content in green algae is much higher than other marine algae such as brown algae and red algae. Furthermore, green algae do not contain lignin in their cell wall and store starch as food in their plastids. Thus, it was investigated that the effect of hydrothermal pretreatment process utilizing microwave irradiation for Ulva pertusa Kjellman, a division of green algae, which is expected to be utilized for bioenergy production, on the enzymatic hydrolysis. The hydrothermal temperature have an effect on the pretreatment of Ulva pertusa Kjellman, but the effect of power of microwave irradiation is negligible. The rate of enzymatic hydrolysis was increased as the hydrothermal temperature increased until $140^{\circ}C$. The enzymatic hydrolysis of pretreated Ulva pertusa Kjellman under the optimum pretreatment conditions (50 W of microwave irradiation power and $150^{\circ}C$ of hydrothermal temperature) with cellulase, ${\alpha}$-amylase, and Novozyme 188 having ${\beta}$-glucosidase acitivity resulted in the saccharification of 96 wt% of total carbohydrate in Ulva pertusa Kjellman during 3 hrs, while it took 24 hrs for the enzymatic hydrolysis of untreated Ulva pertusa Kjellman. It confirmed that the hydrothermal pretreatment was effective on Ulva pertusa Kjellman for the enzymatic hydrolysis.

Recovery of Xylo-oligomer and Lignin Liquors from Rice Straw by Two 2-step Processes Using Aqueous Ammonia Followed by Hot-water or Sulfuric Acid

  • Vi Truong, Nguyen Phuong;Shrestha, Rubee koju;Kim, Tae Hyun
    • Korean Chemical Engineering Research
    • /
    • v.53 no.6
    • /
    • pp.682-689
    • /
    • 2015
  • A two-step process was investigated for pretreatment and fractionation of rice straw. The two-step fractionation process involves first, soaking rice straw in aqueous ammonia (SAA) in a batch reactor to recover lignin-rich hydrolysate. This is followed by a second-step treatment in a fixed-bed flow-through column reactor to recover xylo-oligomer-rich hydrolysate. The remaining glucan-rich solid cake is then subjected to an enzymatic process. In the first variant, SAA treatment in the first step dissolves lignin at moderate temperature (60 and $80^{\circ}C$), while in the second step, hot-water treatment is used for xylan removal at higher temperatures ($150{\sim}210^{\circ}C$). Under optimal conditions ($190^{\circ}C$ reaction temperature, 30 min reaction time, 5.0 ml/min flow rate, and 2.3 MPa reaction pressure), the SAA-hot-water fractionation removed 79.2% of the lignin and 63.4% of the xylan. In the second variant, SAA was followed by treatment with dilute sulfuric acid. With this process, optimal treatment conditions for effective fractionation of xylo-oligomer were found to be $80^{\circ}C$, 12 h reaction time, solid-to-liquid ratio of 1:12 in the first step; and 5.0 ml $H_2SO_4/min$, $170^{\circ}C$, and 2.3 MPa in the second step. After this two-step fractionation process, 85.4% lignin removal and 78.9% xylan removal (26.8% xylan recovery) were achieved. Use of the optimized second variant of the two-step fractionation process (SAA and $H_2SO_4$) resulted in enhanced enzymatic digestibility of the treated solid (99% glucan digestibility) with 15 FPU (filter paper unit) of CTec2 (cellulase)/g-glucan of enzyme loading, which was higher than 92% in the two-step fractionation process (SAA and hot-water).

Enzymatic Hydrolysis of Marine Algae Hizikia fusiforme (해조류 톳 (Hizikia fusiforme)의 효소 가수분해)

  • Song, Bu-Bok;Kim, Sung-Koo;Jeong, Gwi-Taek
    • KSBB Journal
    • /
    • v.26 no.4
    • /
    • pp.347-351
    • /
    • 2011
  • In this study, we investigated the effect of reaction factors on enzymatic hydrolysis of Hizikia fusiforme, which is brown algae in marine biomass resource, using commercial enzymes. The composition of H. fusiforme is 38.9% of reducing sugar, 4.8% of moisture, 17.8% of ash, and 38.5% of others. In the condition of 1-5% substrate, the increase of substrate concentration enhanced the increase of reducing sugar formation; however, the hydrolysis yield did not increase after 24 h. After reaction of 75 h, conversion yield of reducing sugar were obtained to 16.45%, 17.99%, and 14.55% at 1, 2.5, and 5% substrate, respectively. As a result of effect of enzyme amount, the formation of reducing sugar did not show considerable change at 1% substrate. However, in the condition of 2.5% substrate, the great change of reducing sugar formation was observed by the increase of enzyme amount. The conversion yields of reducing sugar were obtained to 18.77% and 22.83% at 1% and 2.5% substrate with 30% enzyme, respectively. As a result of heat treatment of biomass, the high yield was obtained in 2.5% substrate and the yields were increased to 0.06-7.2% by the heat treatment. This result will provide the basic information for production process of biofuels and chemicals from marine biomass H. fusiforme.