• Title/Summary/Keyword: Environmental toxins

Search Result 88, Processing Time 0.02 seconds

Cyanobacterial Toxins, Drinking Water and Human Health

  • Wickramasinghe Wasantha A.;Shaw Glen R.
    • Journal of Environmental Health Sciences
    • /
    • v.31 no.3
    • /
    • pp.192-198
    • /
    • 2005
  • The occurrence of toxic cyanobacterial blooms has been reported worldwide and poses a threat to human health through drinking water exposure. The toxins they produce are highly water soluble and can leach into the water body. To eliminate any risk of drinking water exposure, removal of these toxins is essential before the water is consumed. Conventional water treatment techniques such as chlorination, if managed well, can be effectively used to remove some of these toxins, however, saxitoxin and its derivatives pose a problem. Little toxicological data are available to evaluate the real threat of these toxins.

Cyanobacterial Toxins and Drinking Water Guidelines

  • Wickramasinghe, Wasantha A.;Shaw, Glen R.
    • Proceedings of the Korean Environmental Health Society Conference
    • /
    • 2005.06a
    • /
    • pp.11-44
    • /
    • 2005
  • The occurrence of toxic cyanobacterial blooms has been reported worldwide and pose a threat to human health through drinking water exposure. The toxins they produced are highly water soluble and can leach into the water body. To eliminate any risk of drinking water exposure, removal of these toxins is essential before the water is consumed. Conventional water treatment techniques such as chlorination, if managed well, can be effectively used to remove some of these toxins, however, saxitoxin and derivatives pose a problem. Little toxicological data are available to evaluate the real threat of these toxins.

  • PDF

Environmental Biosensors for Organochlorines, Cyanobacterial Toxins and Endocrine Disrupting Chemicals

  • Sadik, Omowunmi A.;Ngundi, Miriam M.;Yan, Fei
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.5 no.6
    • /
    • pp.407-412
    • /
    • 2000
  • Environmental biosensors and related techniques for monitoring organochlorines, endocrine disrupting chemicals and cyanobacterial toxins are described. The practical requirements for an ideal environmental biosensor are analyzed. Specific case studies for environmental applications are reported for triazines, chlorinated phenols, PCBs, microcystins, and endocrine disrupting chemicals. A new promising approach is reported for microcystins and alkylphenols that utilize electrooptical detection.

  • PDF

Okadaic Acid Group Toxins: Toxicity, Exposure Routes, and Global Safety Management (오카다익산 군 독소: 독성, 분석법 및 관리 동향)

  • Kyoungah Lee;Namhyun Kim;Jang Kyun Kim;Youn-Jung Kim;Jung Suk Lee;Young-Seok Han
    • Journal of Food Hygiene and Safety
    • /
    • v.38 no.6
    • /
    • pp.409-419
    • /
    • 2023
  • Okadaic acid (OA) group toxins, including OA and its analogs, such as dinophysis toxins (DTXs), have been reported to cause diarrheal shellfish poisoning (DSP). These toxins are primarily produced by dinoflagellates and are accumulated in bivalves. Recently, the presence of Dinophysis sp., a causative alga of DSP, has been reported along the coasts of Korea, posing a potential risk of contamination to domestic seafood and exerting an impact on both the production and consumption of marine products. Accordingly, the European Food Safety Authority (EFSA) and the World Health Organization (WHO) have established standards for the permissible levels of OA group toxins in marine products for safety management. Additionally, in line with international initiatives, the domestic inclusion and regulation of DTX2 among the substances falling under the purview of management outlined by the 2022 diarrheal shellfish toxin standard have been implemented. In this study, we reviewed the physicochemical properties of OA group toxins, their various exposure routes (such as acute toxicity, genotoxicity, reproductive and developmental toxicity), and the relative toxicity factors associated with these toxins. We also performed a comparative assessment of the methods employed for toxin analysis across different countries. Furthermore, we aimed to conduct a broad review of human exposure cases and assess the international guideline for risk management of OA group toxins.

Suppression of green mold disease on oak mushroom cultivation by antifungal peptides (항진균성 펩티드에 의한 표고버섯 푸른곰팡이병의 억제)

  • Lee, Hyoung-Jin;Yun, Yeong-Bae;Huh, Jeong-Hoon;Kim, Young-Kee
    • Journal of Applied Biological Chemistry
    • /
    • v.60 no.2
    • /
    • pp.149-153
    • /
    • 2017
  • Contamination and growth of Trichoderma, a green mold, on the oak log and wooden chip or sawdust media can severely inhibit the growth of oak mushroom. Chemicals including pesticides and antibiotics are generally not allowed for the control of green mold disease during mushroom cultivation. In this study, bacterial pathogens causing blotch disease on the oyster mushrooms were isolated and their peptide toxins were purified for the control of green mold disease. Strains of Pseudomonas tolaasii secret various peptide toxins, tolaasin and its structural analogues, having antifungal activities. These peptides have shown no effects on the growth of oak mushrooms. When the peptide toxins were applied to the green mold, Trichoderma harzianum H1, they inhibited the growth of green molds. Among the 20 strains of peptide-forming P. tolaasii, strong, moderate, and weak antifungal activities were measured from 8, 5, and 7 strains, respectively. During oak mushroom cultivation, bacterial culture supernatants containing the peptide toxins were sprayed on the aerial mycelia of green molds grown on the surface of sawdust media. The culture supernatants were able to suppress the fungal growth of green molds while no effect was observed on the mushroom growth and production. They changed the color of molds from white aerial mycelium into yellowish dried scab, representing the powerful anti-fungal and sterilization activities of peptide toxins.

Solution structure and functional analysis of HelaTx1: the first toxin member of the κ-KTx5 subfamily

  • Park, Bong Gyu;Peigneur, Steve;Esaki, Nao;Yamaguchi, Yoko;Ryu, Jae Ha;Tytgat, Jan;Kim, Jae Il;Sato, Kazuki
    • BMB Reports
    • /
    • v.53 no.5
    • /
    • pp.260-265
    • /
    • 2020
  • Scorpion venom comprises a cocktail of toxins that have proven to be useful molecular tools for studying the pharmacological properties of membrane ion channels. HelaTx1, a short peptide neurotoxin isolated recently from the venom of the scorpion Heterometrus laoticus, is a 25 amino acid peptide with two disulfide bonds that shares low sequence homology with other scorpion toxins. HelaTx1 effectively decreases the amplitude of the K+ currents of voltage-gated Kv1.1 and Kv1.6 channels expressed in Xenopus oocytes, and was identified as the first toxin member of the κ-KTx5 subfamily, based on a sequence comparison and phylogenetic analysis. In the present study, we report the NMR solution structure of HelaTx1, and the major interaction points for its binding to voltage-gated Kv1.1 channels. The NMR results indicate that HelaTx1 adopts a helix-loop-helix fold linked by two disulfide bonds without any β-sheets, resembling the molecular folding of other cysteine-stabilized helix-loop-helix (Cs α/α) scorpion toxins such as κ-hefutoxin, HeTx, and OmTx, as well as conotoxin pl14a. A series of alanine-scanning analogs revealed a broad surface on the toxin molecule largely comprising positively-charged residues that is crucial for interaction with voltage-gated Kv1.1 channels. Interestingly, the functional dyad, a key molecular determinant for activity against voltage-gated potassium channels in other toxins, is not present in HelaTx1.

At Death's Door: Alternaria Pathogenicity Mechanisms

  • Lawrence, Christopher B.;Mitchell, Thomas K.;Craven, Kelly D.;Cho, Yang-Rae;Cramer, Robert A.;Kim, Kwang-Hyung
    • The Plant Pathology Journal
    • /
    • v.24 no.2
    • /
    • pp.101-111
    • /
    • 2008
  • The fungal genus Alternaria is comprised of many saprophytic and endophytic species, but is most well known as containing many notoriously destructive plant pathogens. There are over 4,000 Alternaria/host associations recorded in the USDA Fungal Host Index ranking the genus 10th among nearly 2,000 fungal genera based on the total number of host records. While few Alternaria species appear to have a sexual stage to their life cycles, the majority lack sexuality altogether. Many pathogenic species of Alternaria are prolific toxin producers, which facilitates their necrotrophic lifestyle. Necrotrophs must kill host cells prior to colonization, and thus these toxins are secreted to facilitate host cell death often by triggering genetically programmed apoptotic pathways or by directly causing cell damage resulting in necrosis. While many species of Alternaria produce toxins with rather broad host ranges, a closely-related group of agronomically important Alternaria species produce selective toxins with a very narrow range often to the cultivar level. Genes that code for and direct the biosynthesis of these host-specific toxins for the Alternaria alternata sensu lato lineages are often contained on small, mostly conditionally dispensable, chromosomes. Besides the role of toxins in Alternaria pathogenesis, relatively few genes and/or gene products have been identified that contribute to or are required for pathogenicity. Recently, the completion of the A. brassicicola genome sequencing project has facilitated the examination of a substantial subset of genes for their role in pathogenicity. In this review, we will highlight the role of toxins in Alternaria pathogenesis and the use of A. brassicicola as a model representative for basic virulence studies for the genus as a whole. The current status of these research efforts will be discussed.

A Review on Red-tides and Phytoplankton Toxins in the Coastal Waters of Korea (한국연안에 있어서 적조발생과 식물플랑크톤 독성에 관한 개관)

  • 이진환
    • Korean Journal of Environmental Biology
    • /
    • v.17 no.3
    • /
    • pp.217-232
    • /
    • 1999
  • The author made a special review on/red-tides from the following points: definition, terms, yearly progress of researches, causative organisms, searching the causes, toxins, a loss of lives, damages of aquatic products, reducing aquacultural damages and removal efficiency. Red-tides in Korea were caused by diatoms in the early 1960’s, in the end of 1970’s it was caused by non-toxic dinoflagellates when marine pollutions were growing more and more serious. In the end of 1980’s, red-tides were caused by toxic dinoflagellates. Red-tide was only found in selected areas at first, but recently large-scaled red-tides are frequently found in the southern coastal waters of Korea, causing huge losses of marine life. A plan is greatly needed to reduce the damaging red-tides, and removal systems need to be developed.

  • PDF

Toxic Activity of Ricin and RCA from Ricinus communis on Leukemia Cells and ICR Mice (Ricinus Communis로부터 분리된 ricin과 RCA의 독성 비교연구)

  • 김재호;장혜영
    • Toxicological Research
    • /
    • v.11 no.2
    • /
    • pp.193-197
    • /
    • 1995
  • Antibody-toxin conjugates, termed immunotoxins, are currently being evaluated as potential new anticancer agents and one of the most extensively studied toxins for construction of immunotoxin is ricin which exists in the seeds of castor bean, Ricinus communis. Another toxic lectin from castor bean is RCA (Ricinus communis agglutinin). Both toxins are very homologous. We reported the puriffcation procedure and biological properties of ricin from the Korean castor bean in another place and here we report those of RCA. The purified RCA shows three bands on denatured SDS PAGE while ricin shows two bands. On cultured $K_{562}$ cells ricin and RCA both inhibit the multiplication of cells extensively. $30{\mu}g/ml$ of ricin shows 73% of inhibition rate at day 4 compared to 68% in same condition of RCA. The inhibition of multiplication of cells are directly proportional to the concentration of toxins and the incubation period. In every case ricin was more toxic than RCA. The $LD_{50}$ dose of ricin on ICR mice was 60 ng at day 3 but that of RCA was $10{\mu}g$.

  • PDF