• 제목/요약/키워드: Environmental stress

검색결과 3,958건 처리시간 0.04초

Characterization and evaluation of response to heat and chilling stress in exotic weeds using chlorophyll a fluorescence OJIP transient

  • Sohn, Soo In;Lee, Yong Ho;Hong, Sun Hee;Kim, Chang Seok;Kim, Myung Hyun;Na, Chae Sun;Oh, Young Ju
    • 환경생물
    • /
    • 제38권3호
    • /
    • pp.450-460
    • /
    • 2020
  • The occurrence of exotic weeds and their influx into farmlands due to climate change poses many problems. Therefore, it is necessary to generate a prediction model for the occurrence pattern of these exotic weeds based on scientific evidence and devise prevention measures. The photosynthetic apparatus is known as the most temperature-sensitive component of a plant cell and its initial response to temperature stress is to inhibit the activation of photosystem II. This study investigated the potential of OJIP transients in assessing temperature stress in exotic weeds. The four exotic weeds currently flowing into Korean farmlands include Amaranthus spinosus, Conyza bonariensis, Crassocephalum crepidioides, and Amaranthus viridis. These weeds were treated at 5℃, 10℃, 15℃, 20℃, 25℃, 30℃, 35℃, and 40℃ and the OJIP curves and JIP parameters were measured and analyzed. The results showed that heat and chilling stress affected the photosystem II(PSII) electron transport of A. spinosus, whereas C. crepidioides and A. viridis were more affected by high-temperature stress than by low-temperature stress. Lastly, C. bonariensis showed resistance to both high and low-temperature stress. The results of this study suggest that OJIP transients and JIP parameters can be used to analyze damage to the photosynthetic apparatus by temperature stress and that they can serve as sensitive indicators for the occurrence pattern of exotic weeds.

Merging of Satellite Remote Sensing and Environmental Stress Model for Ensuring Marine Safety

  • Yang, Chan-Su;Park, Young-Soo
    • 한국항해항만학회지
    • /
    • 제27권6호
    • /
    • pp.645-652
    • /
    • 2003
  • A virtual vessel traffic control system is introduced to contribute to prevent a marine accident such as collision and stranding from happening. Existing VTS has its limit. The virtual vessel traffic control system consists of both data acquisition by satellite remote sensing and a simulation of traffic environment stress based on the satellite data, remotely sensed data And it could be used to provide timely and detailed information about the marine safety, including the location, speed and direction of ships, and help us operate vessels safely and efficiently. If environmental stress values are simulated for the ship information derived from satellite data, proper actions can be taken to prevent accidents. Since optical sensor has a high spatial resolution, JERS satellite data are used to track ships and extract their information. We present an algorithm of automatic identification of ship size and velocity. It lastly is shown that based on ship information extracted from JERS data, a qualitative evaluation method of environmental stress is introduced.

Endoplasmic Reticulum Stress Protein Expression in Selected Organs of Limanda yokohamae from Masan-Jinhae Bay, Korea

  • Ahn, Sung-Min;Kim, Soo-Woon;Jo, Qtae;Moon, Hyo-Bang;Choi, Hee-Gu;Kang, Chang-Kun;Choe, Eun-Sang
    • 환경생물
    • /
    • 제26권3호
    • /
    • pp.214-219
    • /
    • 2008
  • Changes in stress-associated biomolecules can be used as an important criterion for assessing the levels of environmental pollution because living organisms demonstrate contamination-stimulated stress responses. This study was conducted to determine the environmental status of Masan-Jinhae Bay, Korea, and its effects on marine organisms by investigating the endoplasmic reticulum (ER) dysfunction in the organs of the flat fish, Limanda yokohamae. ER dysfunction was evaluated via Western blot analysis of the ER stress proteins, immunoglobulin heavy chain binding protein (BiP) and C/EBP-homologous protein (CHOP), and the ER stress-associated protein caspase-12. The results showed that the amount of BiP and CHOP immunoreactivity in the flat fish from the bay area was much greater than that from the Gangneung, as a reference site. Similar to the ER stress proteins, the immunoreactivity of caspase-12 was also found to be elevated in the bay area when compared with that of Gangneung. These data suggest that the environmental status of Masan-Jinhae Bay induces the ER stress response, which is able to lead to phenotypic changes in marine organisms including fish.

양산 무기체계 환경 부하 선별 시험 효과도 분석 및 프로파일 설계 자동화 도구 구현 (Effectiveness Analysis and Profile Design Automation Tool Implementation for The Mass Production Weapon System Environmental Stress Screening Test)

  • 김장은
    • 한국산학기술학회논문지
    • /
    • 제17권8호
    • /
    • pp.379-388
    • /
    • 2016
  • 현대 무기체계 제조를 위해 적용되는 수많은 생산 기술과 다양한 공정 환경으로 인해 다양한 결함이 무기체계 제조공정에 유입되고 있다. 이렇게 제조공정에 유입되는 결함 중 육안 검사, 기능 시험 등 기존 품질 관리 절차를 통해 검출할 수 있는 "명백결함(Patent Defect)"과 무기체계 복잡성과 제조공정의 복잡도로 기존 품질 관리 방식으로 검출이 제한되는 "잠재결함(Latent Defect)" 2가지 종류가 있다. 이러한 초기 결함 문제를 최소화하기 위해 무기체계 생산공정 중 유입된 결함요소를 환경부하(온도, 진동)를 활용하여 결함검출/제거/개선하기 위해 환경 부하 선별(ESS : Environmental Stress Screening) 시험을 수행해야 한다. 본 논문은 국내 무기체계 제조업체에서 정량적 환경 부하 선별 시험 설계의 어려움을 최소화하기 위해 MIL-HDBK-344(Environmental Stress Screening of Electronic Equipment)의 수학적 모델을 기반으로 정량적 환경 부하 선별시험 효과도 분석 및 프로파일 자동화 도구를 구현하였으며, 6가지(온도부하변수 3가지(온도범위/온도변화율/허용 잔류결함밀도), 진동부하변수 2가지(부하크기/허용 잔류결함밀도), 시험설계변수 1가지(허용 시험시간)) 시나리오를 통해 구현된 도구 유효성을 확인했다.

Alleviation of Salt Stress by Enterobacter sp. EJ01 in Tomato and Arabidopsis Is Accompanied by Up-Regulation of Conserved Salinity Responsive Factors in Plants

  • Kim, Kangmin;Jang, Ye-Jin;Lee, Sang-Myeong;Oh, Byung-Taek;Chae, Jong-Chan;Lee, Kui-Jae
    • Molecules and Cells
    • /
    • 제37권2호
    • /
    • pp.109-117
    • /
    • 2014
  • Microbiota in the niches of the rhizosphere zones can affect plant growth and responses to environmental stress conditions via mutualistic interactions with host plants. Specifically, some beneficial bacteria, collectively referred to as Plant Growth Promoting Rhizobacteria (PGPRs), increase plant biomass and innate immunity potential. Here, we report that Enterobacter sp. EJ01, a bacterium isolated from sea china pink (Dianthus japonicus thunb) in reclaimed land of Gyehwa-do in Korea, improved the vegetative growth and alleviated salt stress in tomato and Arabidopsis. EJ01 was capable of producing 1-aminocy-clopropane-1-carboxylate (ACC) deaminase and also exhibited indole-3-acetic acid (IAA) production. The isolate EJ01 conferred increases in fresh weight, dry weight, and plant height of tomato and Arabidopsis under both normal and high salinity conditions. At the molecular level, short-term treatment with EJ01 increased the expression of salt stress responsive genes such as DREB2b, RD29A, RD29B, and RAB18 in Arabidopsis. The expression of proline biosynthetic genes (i.e. P5CS1 and P5CS2) and of genes related to priming processes (i.e. MPK3 and MPK6) were also up-regulated. In addition, reactive oxygen species scavenging activities were enhanced in tomatoes treated with EJ01 in stressed conditions. GFP-tagged EJ01 displayed colonization in the rhizosphere and endosphere in the roots of Arabidopsis. In conclusion, the newly isolated Enterobacter sp. EJ01 is a likely PGPR and alleviates salt stress in host plants through multiple mechanisms, including the rapid up-regulation of conserved plant salt stress responsive signaling pathways.

Characterization of full-length enriched expressed sequence tags of dehydration-treated white fibrous roots of sweetpotato

  • Kim, Sun-Hyung;Song, Wan-Keun;Kim, Yun-Hee;Kwon, Suk-Yun;Lee, Haeng-Soon;Lee, In-Chul;Kwak, Sang-Soo
    • BMB Reports
    • /
    • 제42권5호
    • /
    • pp.271-276
    • /
    • 2009
  • Sweetpotato (Ipomoea batatas (L). Lam.) is relatively tolerant to unfavorable growth conditions such as drought, yet has not been exploited to provide a better understanding of the molecular basis of drought stress tolerance. We obtained 983 high-quality expressed sequence tags of 100 bp or longer (average length of 700 bp) from cDNA libraries of detached white fibrous root tissues by subjecting them to dehydration for 6 h. The 431 cDNAs were each assigned a function by alignment using the BLASTX algorithm. Among them, three genes associated with various abiotic stresses and nine genes not previously associated with drought stress were selected for expression pattern analysis through detailed reverse transcription-polymerase chain reaction. The direct and indirect relationships of the 12 genes with drought tolerance mechanisms were ascertained at different developmental stages and under various stress conditions.

Cadmium Toxicity Monitoring Using Stress Related Gene Expressions in Caenorhabditis elegans

  • Roh, Ji-Yeon;Park, Sun-Young;Choi, Jin-Hee
    • Molecular & Cellular Toxicology
    • /
    • 제2권1호
    • /
    • pp.54-59
    • /
    • 2006
  • The toxicity of cadmium on Caenorhabditis elegans was investigated to identify sensitive biomarkers for environmental monitoring and risk assessment. Stress-related gene expression were estimated as toxic endpoints Cadmium exposure led to an increase in the expression of most of the genes tested. The degree of increase was more significant in heat shock protein-16.1, metallothionein-2, cytochrome p450 family protein 35A2, glutathione S-transferase-4, superoxide dismutase-1, catalase-2, C. elegans p53-like protein-1, and apoptosis enhancer-1 than in other genes. The overall results indicate that the stress-related gene expressions of C. elegans have considerable potential as sensitive biomarkers for cadmium toxicity monitoring and risk assessment.

A Ferroxidase, Cfo1, Regulates Diverse Environmental Stress Responses of Cryptococcus neoformans through the HOG Pathway

  • Lee, Kyung-Tae;Lee, Jang-Won;Lee, Dohyun;Jung, Won-Hee;Bahn, Yong-Sun
    • Mycobiology
    • /
    • 제42권2호
    • /
    • pp.152-157
    • /
    • 2014
  • The iron uptake and utilization pathways play a critical role in allowing human pathogens, including Cryptococcus neoformans, the causative agent of fatal meningoencephalitis, to survive within the mammalian body by competing with the host for iron. Here we show that the iron regulon is also required for diverse environmental stress responses and that in C. neoformans, it is regulated by the high-osmolarity glycerol response (HOG) pathway. Between CFO1 and CFO2, two ferroxidase genes in the iron regulon, CFO1 but not CFO2 was induced during oxidative and osmotic stress. Interestingly, we found that the HOG pathway repressed basal expression of both CFO1 and CFO2. Furthermore, when the HOG pathway was blocked, CFO2 also responded to oxidative and osmotic stress and the response of CFO1 was increased. We also established that CFO1 plays a major role in responding and adapting to diverse environmental stresses, including oxidative and genotoxic damage, osmotic fluctuations, heavy metal stress, and stress induced by cell membrane destabilizers. Therefore, our findings indicate that in C. neoformans, the iron uptake and utilization pathways are not only required for iron acquisition and survival, but also play a significant role in the environmental stress response through crosstalk with the HOG pathway.

Involvement of Caenohabditis elegans MAPK Signaling Pathways in Oxidative Stress Response Induced by Silver Nanoparticles Exposure

  • Roh, Ji-Yeon;Eom, Hyun-Jeong;Choi, Jin-Hee
    • Toxicological Research
    • /
    • 제28권1호
    • /
    • pp.19-24
    • /
    • 2012
  • In the present study, toxicity of silver nanoparticles (AgNPs) was investigated in the nematode, Caenohabditis elegans focusing on the upstream signaling pathway responsible for regulating oxidative stress, such as mitogen-activated protein kinase (MAPK) cascades. Formation of reactive oxygen species (ROS) was observed in AgNPs exposed C.elegans, suggesting oxidative stress as an important mechanism in the toxicity of AgNPs towards C. elegans. Expression of genes in MAPK signaling pathways increased by AgNPs exposure in less than 2-fold compared to the control in wildtype C.elegans, however, those were increased dramatically in sod-3 (gk235) mutant after 48 h exposure of AgNPs (i.e. 4-fold for jnk-1 and mpk-2; 6-fold for nsy-1, sek-1, and pmk-1, and 10-fold for jkk-1). These results on the expression of oxidative stress response genes suggest that sod-3 gene expression appears to be dependent on p38 MAPK activation. The high expressions of the pmk-1 gene 48 h exposure to AgNPs in the sod-3 (gk235) mutant can also be interpreted as compensatory mechanisms in the absence of important stress response genes. Overall results suggest that MAPK-based integrated stress signaling network seems to be involved in defense to AgNPs exposure in C.elegans.

플라스틱 자와 지우개를 이용한 고분자재료의 환경응력파괴(ESC) 가속실험 방법에 관한 연구 (Accelerated the environmental stress cracking (ESC) study of polymer materials using a plastic ruler and a PVC eraser)

  • 박준형;안원배;유진성;김경문;남경현
    • 한국신뢰성학회지:신뢰성응용연구
    • /
    • 제13권2호
    • /
    • pp.141-151
    • /
    • 2013
  • The study of environmental stress cracking (ESC) by contact with plastic rulers and PVC erasers which was artificially added to the external stress was carried out in order to accelerate the chemicals crack. To analyze a blooming plasticizer that migrates from the inside of blended eraser to the surface of the eraser, the ESC experiments were carried out at room temperature and $50^{\circ}C$ conditions. The chemicals crack shape caused by the plasticizer and the brittle fracture shape resulted from the external stress were observed in consequence with the cross-sectional surface analysis of the ruler crack by the ESC. The bending strength of the plastic rulers were fractured prior to the yield point and it had low bending flexure stress. We presented that ESC of polymer materials was affected by the polarity of the chemicals and polymer, the exposure time to chemicals, the exposure temperature and the level of strain on the polymer.